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Abstract— In this paper we study the dynamics of plant-pest virus, organic pesticides and natural enemy food 

chain model. Here our control input will be impulsive releasing of virus, natural enemy and organic pesticides. 

The main aim of this paper is to study two periodic solutions namely, Plant pest extinction and pest extinction 

periodic solutions using the above mentioned model. Using Floquet theory of impulsive differential equations 

and small amplitude perturbation technique we establish pest control through the local stability of both the 

periodic solutions. Also numerical examples have been given in order to demonstrate the effectiveness of the 

presented theoretical results. 
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I. INTRODUCTION 

 

It is knows to everyone, that impulsive differential equations serve as basic models to study the dynamics of 

processes that are subject to sudden changes in their states. They have been extensively studied in the past several years, 

see Bainov et. al. [1], Haddad et. al. [5], Ignatyev and Alexander O.[6], Lakshmikantham, Bainov, and Simeonov [8], Li 

and Xiaodi [9], Samoilenko and Perestyuk [10], Stamova et. al. [11]. A very basic and important qualitative problem in 

the study of impulsive differential equations concerns the stability and attractiveness of periodic solutions. 

Many important and interesting mathematical models on this topic have been reported. On the other hand, impulsive 

mathematical models has become a very important direction in the theory of impulsive differential equations, stimulated 

by their numerous applications to problems arising in pest control, orbital transfer of satellite, ecosystems management, 

electrical engineering, and so on. 

Pest control is a most important application of this model. Tremendous benefits have been derived from the use of 

pesticides in different sectors, especially in agriculture, a sector in which the Indian economy depends. Many reports have 

shown that considerable economic losses would be suffered without pesticide use. But pesticides are known to pollute the 

environment, contaminate water and soil, deplete soil fertility, and affect non target organisms. Also it is seen that pests 

can build up resistance to the pesticides by regular use. So farmers are forced to use strong pesticides in large quantity 

while its outstanding performance is poisonous to the warm blooded animals. Chemical pesticides are toxic and which 

only causes a number of health effects, but it is linked to a range of serious illnesses and diseases in humans, like 

respiratory problems to cancer etc... To solve this problem recently, the models for pest control were studied by some 

authors [2–4, 7, 12, 13] and some results were obtained.This paper is divided into 3 sections :- 

 In section II, we describe a mathematical model which discuss the complete behaviour of plant pest virus, 

natural enemy and organic pesticides. This model is actually a modified form of the food chain model 

developed by wang et. al. [13]. 

 In section III, some important lemmas are discussed. Also an effort has been put forth to check the 

boundedness of the system. 

 In section IV, the stability of plant pest eradication periodic solution is discussed. 

 In section V, numerical examples have been given in order to demonstrate the effectiveness of the 

presented theoretical results. 

 

II. MATHEMATICAL MODELLING 

 

The following assumptions are made prior to the proposal of the mathematical model which discuss the complete 

behavior of plant pest virus, natural enemy and organic pesticides. 

Hypothesis : we make following hypothesis for formulate mathematical model 
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 Susceptible pest attacks plant. 

 Virus attacks susceptible pest and make them infected. 

 Infected pest when dies release virus. 

 Natural enemy attacks susceptible pest and consumes them directly. 

 Virus and natural enemy are released periodically. 

 Effect of natural pesticide on natural enemy is negligible. 

 Pesticides are sprayed in an impulsive and periodic fashion, with the same period as the action of releasing   

infected pests but at different moments. As a result, fixed proportions 1 − q1  and 1 − q2  of susceptible pests  and 

infected pests respectively are killed each time. 

With these assumptions, the model proposed by Wang et. al. [13] is modified and following 

mathematical model is proposed: 
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                                           (2.1) 

where x(t), s(t), I(t), w(t) and e(t) are densities of plant, suspectable pest, infected pest, virus particles and natural enemy 

respectively, 
„
c

‟ 
is predation rate of plant by suspectable pest, 

„
α

‟ 
is conversion rate of suspectable pest to infected pest 

„
β

‟  
is 

rate of predation by natural enemy, 
„
µ

‟ 
is production rate of virus from infected pest, r1, r2 and r3 are natural death rates of 

infected pests, virus particles and natural enemies respectively, η1 and η2 are pulse releasing amount of virus particles and 

natural enemies at t = nT, n = 1,2,... and T is the period of impulsive effect. 

 

III. PRELIMINARIES 

 

The solution of system (2.1) is denoted by  
'

Y(t) x(t),s(t), I(t),e(t) and is a piecewise continuous function 

5Y(t) : R R   that is , Y (t) is continuous in the interval (nT,(n + λ)T], ((n+λ)T,(n+1)T] and n ∈ Z
+
. The smoothness  

properties of variables guarantee the global existence and uniqueness of a solution of the system (2.1) for details, see [8]. 

Before proving the main results, we firstly state and establish some Lemmas which are useful in coming section. 

 

Lemma 3.1. [8]: The function m ∈ PC
 
„[R

+
,R] and m(t) be left continuous at tk, k = 1,2,... satisfy the inequalities 

  
'

0 k

k k k k

m (t) p(t)m(t) q(t), t t , t t ,

m(t ) d m(t ) b ,

   

                      t t , k 1,2,3,.        ..

    


   

                                                                  (3.1) 

where p, q ∈ PC[R
+
,R] and dk  ≥ 0, bk are constants, then 
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                                                (3.2) 

If  all the directions of the inequalities in (3.1) are reversed, then (3.2) also holds true for the reversed inequality. 

 

Lemma 3.2. : There exists a constant L > 0, such that x(t) ≤ L, s(t) ≤ L, I(t) ≤ L, e(t) ≤ L and w(t) ≤ L for all solutions  

Y (t) = (x(t), s(t), I(t), w(t) ,e(t)) of system (1) with t large enough. 

Proof:  Define U(t) = x(t) + s(t) + I(t) + e(t) and 0 < r < min{r1, r3}. 

Then for t ≠ nT, We get, 

 
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When t = nT, U(t
+
) ≤ U(t) + η2. Using  Lemma 3.1 for t ∈ (nT,(n + 1)T], then we have 

     

   

t

0 2 2

0 nT t0

0
2

U(t) U(0)exp rt M exp r(t s) ds exp r(t nT)

M
exp rT exp(rt) 1 , as t 

r
    

 

         

    


 

Then we have U(t) is uniformly bounded and hence, by the definition of U(t), there exits a constant     

   0 2
1 2

M
L : exp rT exp(rt) 1

r


     such that x(t) ≤ L1 , s(t) ≤ L1, I(t) ≤ L1, e(t) ≤ L1 for all t large enough.  

Now consider the  subsytem (2.1) 
'
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 Using Lemma 3.1, we get 
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Choosing L = max{L1,L2},  we get the required results. 

 

Lemma 3.3. [7]: Consider the following impulsive system 

                   
'u (t) c du(t), t nT

u(t ) u(t) , t nT, n 1,2,3,...

   


   

                                                                                 (3.3)     

Then system (3.3) has a positive periodic solution u∗(t) and for every solution u(t) of (3.3), we have |u(t) − u∗(t)|→ 0 as          t 

→ ∞, where for t ∈ (nT,(n + 1)T], 
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Now we proceed to find pest extinction periodic solutions for the model (2.1). For the case of pest-

extinction, we obtain the following impulsive system 
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                                                       (3.4) 

Considering the first equation of above subsystem, which is independent from the rest of the equations, we get two 

equilibrium points, namely x(t) = 0 and x(t) = 1. 

For rest of the system (3.4), using Lemma 3.3 we obtain that, 
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is a positive solution of  the subsystem is globally asymptotically stable. 

 

IV. STABILITY ANALYSIS 

 

Theorem 4.1. Let (x(t), s(t), I(t), w(t), e(t)) be any solution of the system (2.1), the plant-pest eradication periodic solution (0, 

0, 0, w∗(t), e∗(t)) is unstable. 

Proof: The local stability of periodic solution (0, 0, 0, w∗(t), e∗(t)), we define 

                                                                        x(t) = 1 + ψ1(t),   

                                                                        s(t) = ψ2(t), 

                                                                        I(t) = ψ3(t), 

                                                                       w(t) = w∗(t) + ψ4(t), 

                                                                        e(t) = e∗(t)+ ψ5(t) 

 

The system (2.1) can be expanded in the following linearized form: 
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From (4.1) if we get a fundamental matrix  )(t  then  
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The linearization of impulsive conditions of (2.1) i.e. equations eleven to fifteenth of (2.1) is 
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Thus the monodromy matrix corresponding to  (4.1) is 
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Since |λ1| >1, From Floquet  theory of impulsive differential equations we get the plant-pest extinction periodic solution of the 

system (2.1) is unstable . 

Theorem 4.2.  Let (x(t), s(t), I(t), w(t), e(t))  be any solution of the system (2.1) the pest eradication periodic solution             

(1, 0, 0, w∗(t), e∗(t)) is locally asymptotically stable iff  T ≤ T 'max
 
.  

Proof:   In order to discuss the stability of (1, 0, 0, w∗(t), e∗(t)) we define 

x(t) = 1 + ψ1(t),  s(t) = ψ2(t), I(t) = ψ3(t),  w(t) = w∗(t) + ψ4(t),  e(t) = e∗(t)+ ψ5(t), where the system (2.1) can be expanded in 

the following linearized form: 
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Choose )(t be the fundamental matrix of (4.3), it must satisfy  
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The linearization of impulsive conditions of (2.1) precisely sixth to tenth of  (2.1) is 
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The linearization of impulsive conditions of (2.1) i.e. equations eleven to fifteenth of (2.1) is 

 

































)(

)(

)(

)(

)(

5

4

3

2

1

t

t

t

t

t











=























10000

01000

0000

0000

00001

2

1

q

q























)(

)(

)(

)(

)(

5

4

3

2

1

t

t

t

t

t











 

Thus the monodromy matrix of (4.3) is 
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Thus from (4.4), we get 
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where )0( is identity matrix. And the eigen values of the monodromy matrix M are given by  
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From Floquet theory of impulsive differential equations we get the plant-pest extinction periodic solution of the system (2.1) 

is locally asymptotically stable iff  |λ2| ≤ 1 that is              
 .  

 

Theorem 4.3. Let (1, 0, 0, w∗(t), e∗(t)) be the pest eradication periodic solution of system (2.1). Then the maximum period to 

become the solution is locally asymptotically stable,      
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that makes the solution locally asymptotically stable then              
  

 

V.  NUMERICAL ANALYSIS 

At first a pest control model is introduced with virus particles and natural enemies as the control inputs.  They are 

released impulsively.  In this section we analyze the theoretical findings numerically.  For this Table 1 is given. 

                                                               

                                                      Table 1: Parametric values for numerical 

 

 

 

 

 

 

 

 

 

 

 

Parameter                                      Description Value per week 

 Predation rate of plant 0.5 

d1 Natural death rate of infected pest population 0.1 

d2 Natural death rate of virus particles 0.2 

d3 Natural death rate of natural enemy 0.2 

 Production rate of virus from infected pest 0.5 

 Conversion rate of plant to pest 0.5 

 Conversion rate of pest to natural enemy 0.2 

η1 Impulsive releasing amount of virus particle  

η2 Impulsive releasing amount of natural enemies  
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It includes the values of various parameters of the system (2.1) which are chosen per week, with x(0+) = 1, s(0+) = 1, I(0+) = 

1, w(0+) = 1, and z(0+) = 1 see [2]. 

In this paper we propose a new mathematical model by extending Corollary 4.1, that can be practically 

implemented.  In this model we add an additional control input, organic  pesticides which is released impulsively. Hence we 

add a new quantity      and       , Table 2 with the parameters used in the above model. 

 

Table 2: Parametric values for numerical 

 

 

 

 

 

 

 

And thus we obtain a new threshold limit        
  using Theorem 4.2  and Theorem 4.3 

 

                         
       + 

 

 
  (

 

  
) 

                             + 1.02 

Where       = 
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      = 14 

                                                                                    So      
   15.02   15 

                                                                   Then                             
  

From this analysis it is clear that in this model the period of impulsive release of virus particle   and natural enemy is 

lengthened. 

CONCLUSIONS 

 

We have analysed the dynamics of plant-pest-virus, organic pesticide and natural enemy food chain model. Spraying 

organic pesticide may lengthen the period of impulsive release of virus particle and natural enemy. It reduces the cost of 

pest control. The impulsive control is then used. Theoretically, pest control is successful while applying impulsive inputs, 

provided it should be applied often enough (T is small), adequate number of pests should die due to pesticide spraying (1 

− q1 is large) or adequately many virus particle and natural enemy should be released periodically (η1,η2 is large). 

However, it is practically not possible to provide arbitrary large η1 and η2, also time period can be effected by human 

activities. So  that the active time may not enough. So we depend on organic pesticide spraying alone. 
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