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1. Introduction 

 

In 2011 Srivastava et. al.  [4] by making use of Bailey’s transformation of truncated series, have established transformation 

formulae involving polybasic hypergeometric functions. 

 

2. Notations 

 

In this section , we list some standard summation and transformation formulae for the basic hypergeometric series which are 

used in this paper.   

Assuming that | |   1 , where q- is non-zero complex number, this condition ensures that all the infinite product will 

converge. 
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The polybasic hypergeometric series is defined, 
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A truncated basic hypergeometric series is 
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where , max (| | | |   )     no zero appears in the denominator. 

The other notations appearing in this paper have their usual meaning. We shall use the following summation formulae in our 

analysis. 
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In 1966 Slater established the following simple but very useful Bailey transformation in the form, if  

   ∑   
 
                                                                                                                              (2.13) 

    ∑            
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Where             are functions of r alone and the series for    is convergent. 

 

3. Main results 
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4. Proof of Main Results 

 

Now first we take           in (2.13) and (2.14) Bailey’s transformation takes the following form: 

If     ∑   
 
                          (4.1) 
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By putting the value of    and    above equation can be written as               
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get the following transformation: 
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Now using result (2.9) we get the following transformation: 
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Which on simplification gives the result (3.1)  

Proof of result (3.2) Taking      = 
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Now using result (2.10) we get the following transformation: 
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Which on simplification  gives the result (3.2) 
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Now using result (2.11) we get the following transformation: 
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Which on simplification  gives the result (3.3) 
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Now using result (2.12) we get the following transformation: 
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Which on simplification  gives the result (3.4) 

5. Special cases 

1. Replacing p = q in (3.1) we obtain  
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