

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)

Impact Factor: 5.22 (SJIF-2017), e-ISSN: 2455-2585 Volume 4, Issue 08, August-2018

CERTAIN RESULTS INVOLVING POLYBASIC HYPERGEOMETRIC FUNCTIONS AND INFINITE PRODUCTS

Neera A. Herbert, Pooja Patel

Department of Mathematics and Statistics Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad.

Abstract : In this paper, making use of certain Polybasic hypergeometric functions and infinite products, an attempt has been made to establish results involving polybasic hypergeometric functions and infinite products.

Keywords : Polybasic hypergeometric functions, infinite products, summations formulae, truncated series.

1. Introduction

In 2011 Srivastava et. al. [4] by making use of Bailey's transformation of truncated series, have established transformation formulae involving polybasic hypergeometric functions.

2. Notations

In this section, we list some standard summation and transformation formulae for the basic hypergeometric series which are used in this paper.

Assuming that |q| < 1, where q- is non-zero complex number, this condition ensures that all the infinite product will converge.

$$(a;q)_n = (a,q)_n = \begin{cases} 1 ; n = 0\\ (1-a)(1-aq) \dots (1-aq^{n-1}) ; n = 1,2,3 \dots \end{cases}$$
(2.1)

$$(a_1, a_2, a_3, \dots, a_r; q)_n = (a_1; q)_n (a_2; q)_n (a_3; q)_n, \dots, (a_r; q)_n$$
(2.2)

$$(a;q)_{-n} = \frac{\left(-\frac{q}{a}\right)^n q^{\frac{n(n-1)}{2}}}{\left(\frac{q}{a'}q\right)_n} (a;q)_n \tag{2.3}$$

$$(a;q)_{2n} = (a;q^2)_n (aq;q^2)_n$$
(2.4)

$$(a;q)_n = \frac{(a;q)_\infty}{(aq^n;q)_\infty} \tag{2.5}$$

$$(a;q)_{\infty} = \prod_{r=0}^{\infty} (1 - aq^r)$$
(2.6)

The polybasic hypergeometric series is defined,

$$\Phi\begin{bmatrix}a_{1,}, a_{2}, \dots, a_{r}; c_{1,1}, \dots c_{1}, r_{1}; \dots; c_{rq,1}, \dots c_{m,r_{m};q,q_{1},\dots q_{m};z}\\b_{1}, b_{2}, \dots, b_{r-1}; d_{1,1,}, \dots d_{1,r_{1}}; \dots d_{m,1}, \dots, d_{m,r_{m}}\end{bmatrix}$$
$$=\sum_{n=0}^{\infty} \frac{(a_{1,}, a_{2}, \dots, a_{r};q)_{n} r^{n}}{(q, b_{1}, b_{2}, \dots, b_{r-1};q)_{n}} \prod_{j=1}^{m} \frac{(c_{j,1}, \dots, c_{j,r_{j}}; q_{j})_{n}}{(d_{j,1}, \dots, d_{j,r_{j}};)_{n}}$$
(2.7)

A truncated basic hypergeometric series is

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Volume 4, Issue 08, August -2018, e-ISSN: 2455-2585, Impact Factor: 5.22 (SJIF-2017)

$${}_{r} \Phi_{s} \begin{bmatrix} a_{1}, a_{2}, a_{3} \dots a_{r}; q; z \\ b_{1}, b_{2}, b_{3} \dots b_{s} \end{bmatrix}_{N} = \sum_{n=0}^{N} \frac{[a_{1}, a_{2}, a_{3} \dots a_{r}; q]_{n} z^{n}}{[b_{1}, b_{2}, b_{3} \dots b_{s}; q]_{n}}$$
(2.8)

where , max (|q|, |z| < 1) and no zero appears in the denominator.

The other notations appearing in this paper have their usual meaning. We shall use the following summation formulae in our analysis.

Slater [3]

$${}_{2}\phi_{1}\left({}^{a,y,q;q}_{ayq}\right)_{n} = \frac{[aq,yq;q]_{n}}{[q,ayq;q]_{n}}$$
(2.9)

Agarwal [1]

$${}_{4}\phi_{3} \left({a,q\sqrt{\alpha},-q\sqrt{\alpha},e;q;1/e} \atop {q,\sqrt{\alpha},-\sqrt{\alpha},\alpha q/e} \right)_{n} = {(\alpha q,eq;q)_{n} \over (q,\alpha q/e;q)_{n}e^{n}}$$
(2.10)

Gasper and Rahman [2]

$${}_{6\Phi5} \left[\frac{\alpha, q\sqrt{\alpha} - q\sqrt{\alpha}, \beta, \gamma, \delta;}{\sqrt{\alpha}, -\sqrt{\alpha}, \frac{\alpha q}{\beta}, \frac{\beta q}{\gamma}, \frac{\gamma q}{\delta}} q, q \right]_{n=\frac{(\alpha q, \beta q, \gamma q, \delta q; q)_n}{(q, \frac{\alpha q}{\beta}, \frac{\alpha q}{\gamma}, \frac{\alpha q}{\delta}, q)_n} \quad \text{provided } \alpha = \beta \gamma \delta$$
(2.11)

Gasper and Rahman [2]

$$\sum_{r=0}^{n} \frac{(1-ap^{r})q^{r}(1-bp^{r}q^{-r})(c,\frac{a}{bc};q)_{r}q^{r}}{(1-a)(1-b)(q,\frac{aq}{b};q)_{r}(\frac{ap}{c},bcp;p)_{r}} = \frac{(ap,bp;p)_{n}(cq,\frac{aq}{bc};q)_{n}}{(q,\frac{aq}{b},q)_{n}(\frac{ap}{c},bcp;p)_{n}}$$
(2.12)

In 1966 Slater established the following simple but very useful Bailey transformation in the form, if

$$\beta_n = \sum_{r=0}^{\infty} \alpha_r \ u_{n-r} v_{n+r} \tag{2.13}$$

$$\gamma_n = \sum_{r=0}^{\infty} \delta_{r+n} u_r v_{2n+r}$$
(2.14)

Where $\alpha_r, \delta_r, u_r, v_r$ are functions of r alone and the series for γ_n is convergent.

3. Main results

$$\Phi\begin{bmatrix}a, y; \alpha q; \beta q; p, q; p\\ayp; q, \alpha \beta q\end{bmatrix} - \Phi\begin{bmatrix}\alpha, \beta; a, y; q, p; pq\\\alpha \beta q; p, ayp\end{bmatrix} + \Phi\begin{bmatrix}\alpha, \beta; ap, yp; q, p; q\\\alpha \beta q; p, ayp\end{bmatrix} = \begin{bmatrix}\underline{(\alpha q, \beta q; q)_{\infty}}\\[\alpha q, \beta q; a, y; q, p; p\beta\\\alpha \beta q; p, ayp\end{bmatrix} + \Phi\begin{bmatrix}\alpha, q\sqrt{\alpha}, -q\sqrt{\alpha}, \beta; ap, yp; q, p; q\beta\\\sqrt{\alpha}, -\sqrt{\alpha}, \frac{\alpha q}{\beta}; p, ayp\end{bmatrix} - \Phi\begin{bmatrix}\alpha, q\sqrt{\alpha}, -q\sqrt{\hat{\alpha}}, \beta; ap, yp; q, p; q\beta\\\sqrt{\alpha}, -\sqrt{\alpha}, \frac{\alpha q}{\beta}; p, ayp\end{bmatrix}$$
(3.1)

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Volume 4, Issue 08, August -2018, e-ISSN: 2455-2585, Impact Factor: 5.22 (SJIF-2017)

$$\Phi\begin{bmatrix}\alpha q, \beta q, \gamma q, \delta q; a, y; \\ \frac{\alpha q}{\beta}, \frac{\alpha q}{\gamma}, \frac{\alpha q}{\delta}; p, ayp; q, p; p\end{bmatrix} + \Phi\begin{bmatrix}\alpha, q\sqrt{\alpha}, -q\sqrt{\alpha}, \beta, \gamma, \delta; a, y; \\ q, \sqrt{\alpha}, -\sqrt{\alpha}, \frac{\alpha q}{\beta}, \frac{\alpha q}{\gamma}, \frac{\alpha q}{\delta}; p, ayp; q, p; p\end{bmatrix}$$
$$-\Phi\begin{bmatrix}\alpha, q\sqrt{\alpha}, -q\sqrt{\alpha}, \beta, \gamma, \delta; a, y; q, p; qp \\ q, \sqrt{\alpha}, -\sqrt{\alpha}, \frac{\alpha q}{\beta}, \frac{\alpha q}{\gamma}, \frac{\alpha q}{\delta}; p, ayp\end{bmatrix} = \begin{bmatrix}(\alpha q, \beta q, \gamma q, \delta q; q)_{\infty} \\ (q, \frac{\alpha q, \alpha q, \alpha q, \alpha q}{\beta}, \frac{\alpha q}{\gamma}, \frac{\alpha q}{\delta}; p, ayp\end{bmatrix} = (\alpha q, \beta q, \gamma q, \delta q; q)_{\infty}$$
(3.3)

$$\Phi\begin{bmatrix}x, y: ap, bp: cq, \frac{aq}{bc};\\xyP: a: b: \frac{ap}{c}, bcp: q, \frac{aq}{b}; P, pq, \frac{p}{q}, p, q; P\end{bmatrix} + \Phi\begin{bmatrix}xP, yP: ap, bp: cq, \frac{aq}{bc};\\xyP: a: b: \frac{ap}{c}, bcp: q, \frac{aq}{b}; P, pq, \frac{p}{q}, p, q; q\end{bmatrix} - \Phi\begin{bmatrix}x, y: apq: \frac{bp}{q}: a, b: c, \frac{a}{bc};\\xyp: a: b: \frac{ap}{c, bcp: q, \frac{aq}{b};} P, bq, \frac{p}{q}p, q; Pq\end{bmatrix} = \frac{(xP, yP; P)_{\infty}}{(P, xyP; P)_{\infty}} \frac{(ap, bp; p)_{\infty}}{(q, \frac{aq}{b}; q)_{\infty}} \frac{(cq, \frac{aq}{bc}; q)_{\infty}}{(q, \frac{bp}{c}; bcp; p)_{\infty}}$$
(3.4)

4. Proof of Main Results

Now first we take $u_r = v_r = 1$ in (2.13) and (2.14) Bailey's transformation takes the following form:

If
$$\beta_n = \sum_{r=0}^n \alpha_r$$
 (4.1)

$$Y_n = \sum_{r=n}^{\infty} \delta_r$$

$$Y_n = \sum_{r=0}^{\infty} \delta_{r+n} \tag{4.2}$$

then
$$\sum_{n=0}^{\infty} \alpha_n Y_n = \sum_{n=0}^{\infty} \beta_n \delta_n$$
 (4.3)

By putting the value of β_n and γ_n above equation can be written as

$$\sum_{n=0}^{\infty} \alpha_n \sum_{r=0}^{\infty} \delta_r + \sum_{n=0}^{\infty} \alpha_n \delta_n$$
$$= \sum_{n=0}^{\infty} \delta_n \sum_{r=0}^n \alpha_r + \sum_{n=0}^{\infty} \alpha_n \sum_{r=0}^n \delta_r$$
(4.4)

Proof of result (3.1) Taking $\alpha_r = \frac{(\alpha,\beta;q)_r q^r}{(q,\alpha\beta q;q)_r}$ and $\delta_r = \frac{(a,y;p)_r p^r}{(p,\alpha yp;p)_r}$ and putting the value of α_r and δ_r in (4.4) respectively, we get the following transformation:

$$\Sigma_{n=0}^{\infty} \frac{(\alpha,\beta;q)_n q^n}{(q,\alpha\betaq;q)_n} \Sigma_{r=0}^{\infty} \frac{(a,y;p)_r p^r}{(p,ayp;p)_r} + \Sigma_{n=0}^{\infty} \frac{(\alpha,\beta;q)_n q^n}{(q,\alpha\betaq;q)_n} \frac{(a,y;p)_n p^n}{(p,ayp;p)_n}$$
$$= \Sigma_{r=0}^n \frac{(\alpha,\beta;q)_r q^r}{(q,\alpha\betaq;q)_r} + \Sigma_{n=0}^{\infty} \frac{(\alpha,\beta;q)_n q^n}{(q,\alpha\beta;q)_n} \Sigma_{r=0}^n \frac{(a,y;p)_r p^r}{(p,ayp;p)_r}$$
(4.5)

Now using result (2.9) we get the following transformation:

$$\Phi\begin{bmatrix}a, y; \alpha q; \beta q; p, q; p\\ayp; q, \alpha \beta q\end{bmatrix} - \Phi\begin{bmatrix}\alpha, \beta; a, y; q, p; pq\\\alpha \beta q; p, ayp\end{bmatrix} + \Phi\begin{bmatrix}\alpha, \beta; ap, yp; q, p; q\\\alpha \beta q; p, ayp\end{bmatrix}$$
$$= \begin{bmatrix}\underline{(\alpha q, \beta q; q)_{\infty}}\\(q, \alpha \beta q; q)_{\infty}\end{bmatrix}\begin{bmatrix}\underline{(\alpha p, yp; p)_{\infty}}\\(p, ayp; p)_{\infty}\end{bmatrix}$$

Which on simplification gives the result (3.1)

Proof of result (3.2) Taking $\alpha_r = \frac{(\alpha, q\sqrt{\alpha}, -q\sqrt{\alpha}, \beta; q)_r}{(q\sqrt{\alpha}, -\sqrt{\alpha}, \frac{\alpha q}{\beta}; q)_r} \beta^r$ and $\delta_r = \frac{(a, y; p)_r p^r}{(p, ayp; p)_r}$ and putting the value of α_r and δ_r in

(4.4) respectively, we get the following transformation:

$$\sum_{n=0}^{\infty} \frac{\left(a,q\sqrt{a},-q\sqrt{a},\beta;q\right)_{n}}{\left(q,\sqrt{a},-\sqrt{a},\frac{aq}{\beta};q\right)_{n}} \beta^{n} \sum_{r=0}^{\infty} \frac{\left(a,y;p\right)_{r}q^{r}}{\left(p,ayp;p\right)_{r}} + \sum_{n=0}^{\infty} \frac{\left(a,q\sqrt{a},-q\sqrt{a},\beta;q\right)_{n}}{\left(q,\sqrt{a},-\sqrt{a},\frac{aq}{\beta};q\right)_{n}} \beta^{n} \frac{\left(a,y;p\right)_{n}p^{n}}{\left(p,ayp;p\right)_{n}} = \sum_{n=0}^{\infty} \frac{\left(a,y;p\right)_{n}}{\left(p,ayp;p\right)_{n}} p^{n} \sum_{r=0}^{n} \frac{\left(a,q\sqrt{a},-q\sqrt{a},\beta;q\right)_{r}}{\left(q,\sqrt{a},-\sqrt{a},\frac{aq}{\beta};q\right)_{r}} \beta^{n} \sum_{n=0}^{\infty} \frac{\left(a,q\sqrt{a},-q\sqrt{a},\beta;q\right)_{n}}{\left(q,\sqrt{a},-\sqrt{a},\frac{aq}{\beta};q\right)_{n}} \beta^{n} \sum_{r=0}^{n} \frac{\left(a,y;p\right)_{r}p^{r}}{\left(p,ayp;p\right)_{r}}$$

Now using result (2.10) we get the following transformation:

$$\Phi\begin{bmatrix}\alpha q, \beta q; a, y; q, p; p\beta\\ \frac{\alpha q}{\beta}; p, ayp\end{bmatrix} + \Phi\begin{bmatrix}\alpha, q\sqrt{\alpha}, -q\sqrt{\alpha}, \beta; ap, yp; q, p; q\beta\\ \sqrt{\alpha}, -\sqrt{\alpha}, \frac{\alpha q}{\beta}; p, ayp\end{bmatrix} - \Phi\begin{bmatrix}\alpha, q\sqrt{\alpha}, -q\sqrt{\alpha}, \beta; a, y; \beta p\\ \sqrt{\alpha}, -\sqrt{\alpha}, \frac{\alpha q}{\beta}; p, ayp\end{bmatrix} = \begin{bmatrix} (ap, yp; p)_{\infty}\\ (p, ayp; p)_{\infty} \end{bmatrix} \sum_{n=0}^{\infty} \frac{(\alpha, q\sqrt{\alpha}, -q\sqrt{\alpha}, \beta; q)_n}{(q, \sqrt{\alpha}, -\sqrt{\alpha}, \frac{\alpha q}{\beta}; q)_n} \beta^n$$

Which on simplification gives the result (3.2)

Proof of result (3.3) Taking $\alpha_r = \frac{(\alpha, q\sqrt{\alpha}, -q\sqrt{\alpha}, \beta, \gamma, \delta; q)_r q^r}{(q, \sqrt{\alpha}, -\sqrt{\alpha}, \frac{aq}{\beta}, \frac{aq}{\gamma}, \frac{aq}{\delta}; q)_r}$ and $\delta_r = \frac{(a, y; p)_r p^r}{(p, ayp; p)_r}$ and putting the value of α_r and δ_r in (4.4)

respectively, we get the following transformation:

$$\begin{split} \sum_{n=0}^{\infty} \frac{(\alpha,q\sqrt{\alpha},-q\sqrt{\alpha},\beta,\gamma,\delta;q)_n q^n}{\left(q,\sqrt{\alpha},-\sqrt{\alpha},\frac{\alpha q}{\beta},\frac{\alpha q}{\gamma},\frac{\alpha q}{\delta};q\right)n} \sum_{r=0}^{\infty} \frac{(a,y;p)_r p^r}{(p,ayp;p)_r} + \sum_{n=0}^{\infty} \frac{(\alpha,q\sqrt{\alpha},-q\sqrt{\alpha},\beta,\gamma,\delta;q)_n q^n}{\left(q,\sqrt{\alpha},-\sqrt{\alpha},\frac{\alpha q}{\beta},\frac{\alpha q}{\gamma},\frac{\alpha q}{\delta};q\right)n} \frac{(a,y;p)_n p^n}{(p,ayp;p)_n} \\ &= \sum_{n=0}^{\infty} \frac{(a,y;p)_n p^n}{(p,ayp;p)_n} \sum_{r=0}^{\infty} \frac{(\alpha,q\sqrt{\alpha},-q\sqrt{\alpha},\beta,\gamma,\delta;q)_r q^r}{(q,\sqrt{\alpha},-\sqrt{\alpha},\frac{\alpha q}{\beta},\frac{\alpha q}{\gamma},\frac{\alpha q}{\delta};q)_r} + \sum_{n=0}^{\infty} \frac{(\alpha,q\sqrt{\alpha},-q\sqrt{\alpha},\beta,\gamma,\delta;q)_n q^n}{\left(q,\sqrt{\alpha},-\sqrt{\alpha},\frac{\alpha q}{\beta},\frac{\alpha q}{\gamma},\frac{\alpha q}{\delta};q\right)n} \sum_{r=0}^{n} \frac{(a,y;p)_r p^r}{(p,ayp;p)_r} \end{split}$$

Now using result (2.11) we get the following transformation:

$$\Phi\begin{bmatrix}x, y: ap, bp: cq, \frac{aq}{bc};\\xyP: a: b: \frac{ap}{c}, bcp: q, \frac{aq}{b}; P, pq, \frac{p}{q}, p, q; P\end{bmatrix} + \Phi\begin{bmatrix}xP, yP: ap, bp: cq, \frac{aq}{bc};\\xyP: a: b: \frac{ap}{c}, bcp: q, \frac{aq}{b}; P, pq, \frac{p}{q}, p, q; q\end{bmatrix}$$
$$-\Phi\begin{bmatrix}x, y: apq: \frac{bp}{q}: a, b: c, \frac{a}{bc};\\xyp: a: b: \frac{ap}{c, bcp: q, \frac{aq}{b}}; P, bq, \frac{p}{q}p, q; Pq\end{bmatrix}$$
$$=\frac{(xP, yP; P)_{\infty}}{(P, xyP; P)_{\infty}} \frac{(ap, bp; p)_{\infty}}{(q, \frac{aq}{b}; q)_{\infty}} \frac{(cq, \frac{aq}{bc}; q)_{\infty}}{(\frac{ap}{c}, bcp; p)_{\infty}}$$

Which on simplification gives the result (3.3)

Proof of result (3.4) Taking

$$\alpha_r = (apq; pq)_r (\frac{bp}{q}; \frac{p}{q})_r (a, b; p)_r (c, \frac{a}{bc}; q)_r q^r (a; pq)_r (b; \frac{p}{q})_r (q, \frac{aq}{b}; q)_r (\frac{ap}{c}, bcp; p)_r$$

and

 $\delta_r = \frac{(x,y;P)_r P^r}{(P,xyP;P)r}$ and putting the value of α_r and δ_r in (3.4) respectively, we get the following transformation:

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Volume 4, Issue 08, August -2018, e-ISSN: 2455-2585, Impact Factor: 5.22 (SJIF-2017)

Now using result (2.12) we get the following transformation:

$$\Phi\begin{bmatrix}x, y: ap, bp: cq, \frac{aq}{bc};\\xyP: a: b: \frac{ap}{c}, bcp: q, \frac{aq}{b}; P, pq, \frac{p}{q}, p, q; P\end{bmatrix} + \Phi\begin{bmatrix}xP, yP: ap, bp: cq, \frac{aq}{bc};\\xyP: a: b: \frac{ap}{c}, bcp: q, \frac{aq}{b}; P, pq, \frac{p}{q}, p, q; q\end{bmatrix} - \Phi\begin{bmatrix}x, y: apq: \frac{bp}{q}: a, b: c, \frac{aq}{b};\\xyP: a: b: \frac{ap}{c}, bcp: q, \frac{aq}{b}; P, bq, \frac{p}{q}, p, q; q\end{bmatrix} = \frac{(xP, yP; P)_{\infty}}{(P, xyP; P)_{\infty}} \frac{(ap, bp; p)_{\infty}}{(q, \frac{aq}{b}; q)_{\infty}} \frac{(cq, \frac{aq}{bc}; q)_{\infty}}{(\frac{ap}{c}, bcp; p)_{\infty}}$$

Which on simplification gives the result (3.4)

5. Special cases

1. Replacing p = q in (3.1) we obtain

$${}_{4}\Phi_{3}\begin{bmatrix}a, y; \alpha q, \beta q; q; q\\ayq; q, \alpha \beta q\end{bmatrix} - {}_{4}\Phi_{3}\begin{bmatrix}\alpha, \beta; a, y; q; q^{2}\\\alpha\beta q; q, ayq\end{bmatrix} + {}_{4}\Phi_{3}\begin{bmatrix}\alpha, \beta; aq, yq; q; q\\\alpha\beta q; q, ayq\end{bmatrix}$$
$$= \begin{bmatrix}(\alpha q, \beta q; q)_{\infty}\\(q, \alpha\beta q; q)_{\infty}\end{bmatrix} \begin{bmatrix}(\alpha q, yq; q)_{\infty}\\(q, \alpha\beta q; q)_{\infty}\end{bmatrix}$$

Replacing p = q in (3.2) we obtain

$${}_{4}\Phi_{3}\begin{bmatrix}\alpha q,\beta q;a,y;q;q\beta\\\frac{\alpha q}{\beta};q,ayq\end{bmatrix} + {}_{4}\Phi_{3}\begin{bmatrix}\alpha,q\sqrt{\alpha},-q\sqrt{\alpha},\beta;aq,yq;q;q\beta\\\sqrt{\alpha},-\sqrt{\alpha},\frac{\alpha q}{\beta};q,ayq\end{bmatrix} - {}_{4}\Phi_{3}\begin{bmatrix}\alpha,q\sqrt{\alpha},-q\sqrt{\alpha},\beta;a,y;\beta q\\\sqrt{\alpha},-\sqrt{\alpha},\frac{\alpha q}{\beta};q,ayq\end{bmatrix} = \begin{bmatrix}\underline{(aq,yq;q)_{\infty}}\\(q,ayq;q)_{\infty}\end{bmatrix}\sum_{n=0}^{\infty}\frac{(\alpha,q\sqrt{\alpha},-q\sqrt{\alpha},\beta;q)_{n}}{(q,\sqrt{\alpha},-\sqrt{\alpha},\frac{\alpha q}{\beta};q)_{n}}\beta^{n}$$

6. Reference

- 1. Agarwal, R.P. (1978), Generalized hypergeometric series and it's application to the theory of combinational analysis and partition theory *Oxford University Press, Ely House, London*.
- 2.Gasper and Rahman (1991) Basic hypergeometric series, Encyclopedia of mathematics and its Applications, *Combridge University press, New York*, NY, USA.
- 3.Slater, L.J (1966), Generalized Hypergeometic Functions, Cambridge university Press, Cambridge
- 4. Srivastava P. and Rudravarapu M, (2011) Certain Transformation Formulae for Polybasic Hypergeometric Series, *International Scholariv Research Network, (1-10)* ISRN Algebra.