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Abstract 

This paper is devoted to obtaining convergent series expansion for the flow of electrically-conducting 

Maxwell fluid past a wedge-shaped wall proposed in a recent study by Abbasbandy et al. [Ababsbandy, 

S., Naz, R., Hayat, T., Alsaedi, A.: Numerical and analytical solutions for Falkner-Skan flow of MHD 

Maxwell fluid. Appl. Math. Comput. 242, 569-575 (2014)]. It is found that the 9th-order homotopy 

approach converges sufficiently rapidly for the case   -     . Furthermore, the reliability of the 

present solution through some direct comparisons was verified. 
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1. Introduction 

 

The Maxwell fluid is a viscoelastic non-Newtonian material, where the mathematical characters of 

governing equations vary only with a small degree of compressibility [1]. A major success of these 

materials is that they have been investigated by so many researchers in the last two decades [2-16]. It is 

noteworthy that one of the most powerful methodologies for finding the velocity, temperature and 

nanoparticle concentration (if any) distributions is the homotopy approach which is genuinely effective, 

and does not depend on any small or large physical properties [17-27]. In 2012, Hayat et al. [28] 

presented a unique solution for the mixed convection Maxwell fluid past a wedge-shaped wall. They 

could show that their approach does not suffer from long processing time (P-time), and is uniformly valid 

throughout the domain of convergence. Furthermore, Abbasbandy et al. [29], Asaithambi [30] and 

Abbasbandy and Mustafa [31] developed other solutions for the same geometry that included Chebyshev 

collocation method (CCM), Runge-Kutta method (RKM) and homotopy-Padé technique, respectively. 

     It is to be mentioned here that, this paper investigates the additional convergence of electrically-

conducting Maxwell fluid over a wedge-shaped wall. To the best of the author's knowledge, there is no 

work dealing with this issue yet. 

 

2. Theoretical formulation 

 

Consider an electrically-conducting fluid flow bounded by a wedge-shaped wall, where the pressure 

gradient is approximately zero. According to basic hypothesis of the Maxwell fluid type, the continuity 

and boundary-layer  -momentum equations can be expressed as [32], 

                                                                                                                                                      (1a) 

           ( 
       

             )             
        

 
(        )                 (1b) 
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with the boundary conditions, 

                           
   ( )                     

                                                                                                                  (2) 

where   and   are the velocity components along and perpendicular to the  - and  -directions, 

respectively,   is the relaxation time,   is the characteristic velocity,   is the kinematic viscosity,   is the 

electrical conductivity,   is the magnetic field strength,   is the inclination angle of the magnetic field,   

is the density and   is the stretching rate. 

     Upon introducing the variables   √ 

 
 ,         and    √   , the governing equation and 

associated boundary conditions are attained by, 

      (    
 )      (     

 )         (     )               
                         (3) 

                          

                                     
                  (4) 

where      and   √   

  
 are the Maxwell fluid parameter and Hartmann number, respectively. 

     Here, the dimensionless quantity skin friction coefficient takes the form [33], 

√      (   )    ( )                             (5) 

where     
  

 
 is the local Reynolds number. 

 

3. Solution methodology 

Let us define the general nonlinear problem in the following form, 

 [ ( )]                                                                                                        (6) 

where   is a nonlinear operator. Using   [   ] as an embedding parameter, the homotopy function is 

assumed to be [34], 

 ( ̅    )  (   ) [ ̅(   )    ( )]     [ ̅(   )]                                                                    (7) 

where  ̅ is an unknown function of   and  ,     is an auxiliary parameter,   is an auxiliary linear 

operator and    is an initial guess of  . It is to be noted here that, in the limit as   approaches 0 and 1, 

 ̅(   ) varies from the initial guess to the solution of  ( ). Therefore,  ̅(   )    ( ) and 
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 ̅(   )   ( ) can be considered as the solution of  ( ̅    )|      and  ( ̅    )|     , 

respectively. 

     By expanding  ̅(   ) in a Taylor's series with respect to  , one would obtain, 

 ̅(   )   ̅(   )  ∑
 

  
 ̅  
( )(   )|   

 
      ( )  ∑   ( ) 

  
                      (8) 

where    is the  th-order deformation derivative. 

     By equating the homotopy function given in Eq. (7) to zero and setting    , the zeroth-order 

deformation equation is constructed as [34], 

 [ ̅(   )    ( )]                                              (9) 

     Also, differentiating  ( ̅    )      times with respect to  , setting     and dividing it by   , after 

dropping the hats, gives the following  th-order deformation equation, 

 [  ( )        ( )]  
 

(   ) 
    

(   )[ (   )]|                             (10) 

where, 

   {
           
           

                                                                                                                                       (11) 

     Here, the initial guess and auxiliary linear operator are appropriately as, 

  ( )    (   
  )                                                                                                                            (12) 

 [ (   )]       (   )     (   )                                                                                                      (13) 

with the property, 

 [      
     

  ]                                                                                                                         (14) 

where   -   are the integration constants. 

     The Taylor's series expansion for  (   ) can be seen by rewriting Eq. (8) in the form, 

 (   )    ( )     ( )   
   ( )                                                                                             (15) 

     The nonlinear operator in this case becomes, 

 [ (   )]       (   )  (    
 ) (   )    (   )  (     

 (   ))

                                  (     (   ))     (   )   (   )    (   )    
      (   ) 

            (16) 

with the boundary conditions, 
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 (   )       (   )                    

   (   )                                              
                                                                                            (17) 

     The zeroth-order deformation equation is constructed as, 

     ( )      ( )                                                                                                                               (18) 

which goes to zero boundary conditions. 

     The  th-order deformation equation is given by, 

      ( )      ( )    (        ( )        ( ))  
 

(   ) 
    

(   )[ (   )]|                        (19) 

     After finding the integration constants   -  , by setting    , the  th-order approximate solution is 

generated as, 

  ( )    
 ( )    

 ( )(     )      
 ( )                                                                                        (20) 

where   
 ( ) is a particular solution. Therefore, the  th-order approximate solution yields, 

  ( )  ∑   ( )
 
                                                                                                                                    (21) 

4. Results and discussion 

 

To validate the accuracy and efficiency of the present solution, the geometric and physical properties, 

unless outlined otherwise, are provided as      ,     and      . It is to be mentioned here that, 

these parameters are matched with the case investigated by Abbasbandy et al. [32], which consisted of 

bounds on the convergence, not calculations for the actual rate of convergence. In addition, due to 

Abbasbandy et al. [32], the auxiliary parameter in this case is taken as   -    . In Table 1, the present 

solution is compared with those reported by Abbasbandy et al. [29], Asaithambi [30] and Abbasbandy 

and Mustafa [31]. 

     According to the results given in Table 1, by increasing the values of Maxwell fluid parameter, the 

skin friction coefficient in all cases is enhanced; because for large   the fluid behaves as a very stiff 

elastic material. In addition, the 9th-order homotopy approach agrees well with those of Abbasbandy et 

al. [29], Asaithambi [30] and Abbasbandy and Mustafa [31] with an incurred error of at most 2.11%, 

1.88% and 0.03%, respectively. Therefore, it can be concluded that the 9th-order homotopy approach 

provides more accurate results than those of 5th- and 7th-order ones. However, the discrepancies between 

the present solution and those of CCM and RKM findings could be due to the algebraic nature of 

numerical manipulation. 

     It is worth noting that a further reduction of P-time can be obtained by considering the square residual 

error as [35], 

   
 

   
∑ ( [∑   ( )

 
   ]

     
)
 

 
                                                                                                    (22) 

     It is to be noted here that solving        in terms of   and using the fact that -      -     [1], is 

necessary and sufficient to minimize the square residual error of any order. 
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     To find the admissible value of auxiliary parameter, one should draw the variation of square residual 

error versus different values of  . Then, for any minimum choice of resulting configuration, the 

admissible value of auxiliary parameter will be found explicitly. This issue is shown in Fig. 1 for    . 

     As it is seen from Fig. 1, the square residual error achieves its minimum possible values when the 

auxiliary parameter is selected as   -     . Furthermore, as one would expect, the P-time is then 

reduced through the use of Eq. (22). 

     Table 2 investigates convergence and uniqueness of the series expansion for the values of auxiliary 

parameter, square residual error and P-time with    , 7 and 9. It can be observed from this table that 

the square residual error approaches zero as   tends to infinity. Therefore, in view of the results provided 

in Tables 1 and 2 and Fig. 1, one can say that employing the homotopy approach is essential to 

accelerate rate of convergence without any loss of accuracy. 

     A comparison of the local velocity distribution using the admissible value of auxiliary parameter 

obtained through the homotopy approach is depicted in Fig. 2. This figure also represents verifications 

for the converged local velocity distribution compared with those of Abbasbandy et al. [29]. According 

to 

Fig. 2, it is observed that the 9th-order homotopy approach for the case of   -      agrees remarkably 

well with the numerical findings reported by Abbasbandy et al. [29]. That is due to the fact that the 

homotopy approach is essentially divergence free when the square residual error given in Eq. (22) is 

employed. Accordingly, it is to be mentioned here that   -      can give accurate answers to the 

question of how an electrically-conducting Maxwell fluid flow past a wedge-shaped wall behaves. Here, 

for the sake of brevity, only the converged local velocity distribution versus some different   is presented 

in Table 3. 

     Based on the results listed in Table 3, the converged local velocity distribution satisfies Eq. (4) 

at    . It is to be noted that the abovementioned criterion is most useful for finding exact solutions of 

highly nonlinear problems especially large in the case of series expansion. 

 

5. Conclusions 

 

This paper was aimed to investigate briefly the flow of Maxwell fluid past a wedge-shaped wall, and also 

provide a convergence criterion for the comparison studies. It was shown that the 9th-order homotopy 

approach could give high-accuracy approximations than those of 5th- and 7th-order ones for the local 

velocity distribution and skin friction coefficient.  
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Nomenclatures 

  Magnetic field strength kg s
-2

 A
-1 

   Skin friction coefficient - 

  Hartmann number - 

    Local Reynolds number - 

  Characteristic velocity m s
-1

 

 ,   Velocity components along and perpendicular to the  - and  -directions, respectively m s
-1
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Greek symbols 

  Relaxation time s 

  Maxwell fluid parameter - 

  Similarity variable - 

  Inclination angle of the magnetic field - 

  Stretching rate s
-1

 

  Kinematic viscosity m
2
 s

-1
 

  Density kg m
-3

 

  Electrical conductivity S m
-1

 

  Similarity function - 
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Figure captions 

Fig. 1 Selection of admissible value of auxiliary parameter 

Fig. 2 Influence of the auxiliary parameter on the local velocity distribution with the property       

 

Table 1 Verification of the skin friction coefficient obtained by different solution methodologies 

  Present (  -    ) Abbasbandy et al. [29] Asaithambi [30] Abbasbandy and 

Mustafa [31] 
            

0 1.58531544 1.58532210 1.58532792 1.58534427 1.585339 1.58533068 

0.25 1.63420170 1.63420659 1.63421109 1.63413446 1.634145 1.63421469 

0.5 1.68508842 1.68509517 1.68509991 1.68535001 1.685494 1.68510977 

0.75 1.73643499 1.73644106 1.73644615 1.73698860 1.736842 1.73645170 

1 1.78752090 1.78752755 1.78753296 1.78849101 1.788302 1.78753609 

 

Table 2 Convergence of the series expansion, when the value of P-time is rounded up to two digits 

                

        P-time (s)          P-time (s)          P-time (s) 

0 -0.427           7.02  -0.436           15.34  -0.442           38.20 

0.2 -0.427           7.02  -0.436           15.34  -0.442           38.20 

0.4 -0.427           7.02  -0.436           15.34  -0.442           38.20 

0.6 -0.427           7.02  -0.436           15.34  -0.442           38.20 

0.8 -0.427           7.02  -0.436           15.34  -0.442           38.20 

1 -0.427           7.02  -0.436           15.34  -0.442           38.20 
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Table 3 Variation of the local velocity distribution versus   

      (   )     (   )     (   )     (   ) 

0 0 0 0 0 

0.5 0.2417 0.3809 0.4278 0.4326 

1 0.5396 0.6663 0.7099 0.7217 

1.5 0.6911 0.8814 0.9015 0.9416 

2 0.8071 0.9560 0.9810 1 

2.5 0.9255 1 1 1 

3 1 1 1 1 
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