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Abstract—The plates are major load carrying structural elements in building, automobile, aerospace structures, etc. 

The situations like mat foundations, manholes in tank, certain machine parts, ships, submarines, etc, make it 

necessary to provide a hole in the plate. The pressure at hole causes stress concentration around holes and a 

complicated stress distribution throughout the plate. An accurate prediction of behaviour of plate not only improves 

the safety and economy of these elements, but also the safety and economy of the whole structure. This study intends 

to model such plates for loads and stresses ranging from elastic to plastic behaviour using a higher order shear 

deformation theory (HOSDT), which accounts for warping of the cross section. In the Elasto-Plastic analysis, the 

structure is designed beyond the yield stress, which allows a redistribution of stresses beyond elastic limit, thus 

increasing the load carrying capacity. An incremental iterative finite element method has been used for the analysis 

of such plates. The square plates with clamped and simply supported edges have been studied for a central square 

hole. The spread of plastic zone is demonstrated for such plates. 
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I. INTRODUCTION 

 

A plate is an important structural element in buildings, automobiles, naval, aerospace industries, etc. It is the major 

load carrying element in most of these applications. Plates are capable of taking bending moments and shear forces 

perpendicular to their own plane, as well as forces lying in their own plane. An accurate prediction of behaviour of plate 

not only improves the safety and economy of these elements, but also the safety and economy of the whole structure 

through a better monitoring of stress and load transfers to the other connected elements. 

The proper prediction of bending behaviour, of plates resulted in the development of various bending theories. 

Kirchhoff‟s classical plate theory was based on over simplifying assumptions involving neglect of the transverse normal 

strain, transverse normal stress and transverse shear strain which have limited the scope of their theory to thin plates only. 

The first order shear deformation theory (FOSDT), which accounted for the transverse shear strain were also applicable to 

moderately thick plates and had a limited improvement in accuracy. Some heavy structural engineering applications such 

as nuclear reactors, deep tunnels, heavy machine foundation, etc., involve the use of thick plates where even these theories 

prove insufficient. 

 If the plate is considered as three dimensional body and the equations of elasticity are applied, definitely it 

renders a most accurate solution, but the resulting governing partial differential equations become so complicated that 

their solutions are either too costly or very often impossible for many boundary conditions, loads, etc. The higher order 

shear deformation theories were degenerated from three dimensional elasticity equations to two dimensional 

representation and account for warping of the cross section by higher order assumed displacement field. These refined 

theories are based on a linear elastic relationship between the stresses and strains and thus a design based on them 

restricted the material to be stressed to this limit while most of the material remains under stressed. This renders the elastic 

design highly uneconomical. An Elasto-Plastic design, in which almost the whole material is stressed to its yield limit and 

even beyond that, has to be very economical. The Elasto-Plastic design is also essential for structures which are 

occasionally stressed beyond the elastic limit of their materials, like aerospace structures or the structures which are 

subjected to blast and earthquake loads. Further, almost all the materials, particularly the ductile ones, can withstand 

strains much higher than those encountered within the elastic limit. The design based on elastic behaviour therefore fails 

to take the advantage of some of these materials to carry stresses above yield stress. 
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 There are many situations where it is necessary to provide a hole in the plate. Such situations are mat foundations, 

manhole in tank, utility ducts in building, certain machine parts, ship, submarines, pressure vessels, chimney stacks, walls 

of building subjected to wind loads, roofs of building etc. The pressure at hole causes stress concentration around holes 

and a complicated stress distribution throughout the plate. It also makes the computation of load-deflection and stress-

strain behaviour difficult. This study intends to model such plates for all ranges of load and stresses. Even in elastic 

analysis, there is a complex stress distribution around holes which to be dealt with accurate methods of analysis. Material 

around hole is therefore more prone to be stressed beyond yield stress which further cause redistribution of stresses after 

yield. The Elasto-Plastic analysis of such problem is of utmost important for modeling its actual behaviour.  

 

II. LITERATURE SURVEY 

 

2.1 Development in the elastic plate bending theories 

 

Kirchhoff was developed a theory based on assumption that straight lines perpendiculars to mid-surface (i.e. transverse 

normal) before deformation remain straight and perpendicular to mid-surface after deformation. This assumption limited 

the application of this theory to the thin plates only. In thick plate applications however, the effect of shear deformation is 

significant. This guided the research towards the developments of more accurate theories, which account, at least 

approximately, for the effect of the shear deformation on the plate behaviour. Reissner whowas first attempted to 

incorporate the effect of shear deformation. He used a variational formulation technique to correct the transverse 

displacement only, while the stresses yx  , and xy  remained linear in the thickness coordinate '' z . Srinivas and Rao 

[1] conducted a three-dimensional elasticity analysis of flexure of thick rectangular plates and compared with the 

corresponding classical thin plate theory results. Their results serve as standard benchmark solutions for the assessment of 

shear-deformation theories. Kant [2] analysed the rectangular plate with refined higher-order theory based on three-

dimensional Hooke‟s law. The higher-order displacement model adopted gives rise to a more realistic quadratic variation 

of transverse shear strain and a linear variation of transverse normal strain through the plate thickness. He used the 

segmentation method and suggested its use for analysis of plates simply supported on two opposite edges for an efficient, 

economical and accurate solution. 

Reddy [3] presented a higher-order shear deformation theory accounting for the cubic variation of in-plane 

displacements and the parabolic distribution of transverse shear strains though the thickness of the plates and von 

Karmann strains. Lee et al. [4] simplified a higher order theory with the assumption of in-plane rotation tensor not varying 

through the thickness. The theory accounts for a cubic variation of in-plane stress and parabolic variation of transverse 

shear stress with zero values at free surfaces. As most of the problems were either difficult or impossible to solve by the 

analytical methods, the solutions were sought using the numerical techniques. Many elements accounting for transverse 

shear deformation have been developed for finite element solutions, although initially most of these were either restricted 

to rectangular shape or required many degrees of freedom.  

 

2.2 Recent development in elastic and Elasto-Plastic incremental non-linear analysis 

 

The designs based on the elastic bending analysis, however accurate they may be, will not be the most economical as 

these analyses limit the stresses within the elastic limit. However, when the structure is loaded beyond elastic limit, the 

plastic strain occurs, which causes a redistribution of stresses. The computation of this redistribution is not easy, and limit 

analysis has been the usual option for such an analysis. The limit analysis is applicable to rigid perfectly-plastic behaviour 

while almost all the materials are elastic before yielding. The current state of stress in a yielded material again depends 

upon the history of loading. Therefore, an analysis starting from the loading in the elastic range and gradually increasing 

to plastic range till failure would be closer to the true behaviour of the plate.  

Ukadgaonker and Rao [5] gave a general solution for two dimensional stress distribution around triangular holes in 

isotropic plate and orthotropic plate with oriented fibres and multilayered symmetric laminates. Generalised plane stress 

with an equivalent single layer approach is adopted. Uniaxial, biaxial and shear stresses at infinity were considered in 

general solution for arbitrary biaxial loading. Tangential shear, uniform pressure around hole were considered in other 

solutions. Results were obtained for single layered and multi layered plates for graphite/epoxy and other materials. 

Cesim and Onur [6] studied an elastic-plastic stress analysis and expansion of plastic zone in layers of stainless steel 

fiber-reinforced aluminum metal laminated plates. Plates with simply supported and clamped edges were considered for 

Elasto-plastic stress analysis using finite element method and first order shear deformation theory (FOSDT) for small 

deflection. Conclusions were drawn on the basis of yielding point and intensity of residual stress component in composite 

plate.  
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Tripathi and Rode [7] successfully applied higher order shear deformation theory proposed by Kant and later modified 

by Kant and Pandya for nonlinear analysis of plate bending using an incremental finite element formulation. They have 

concluded that HOSDT predicts higher collapse load as compared to other formulations based on rather first order shear 

deformation theory or classical plate theory. Tripathi et al. [8] applied higher order shear deformation theory for elasto-

plastic analysis of plate bending layered model. The incremental finite elemental formulation is used with nine noded 

Heterosis element by provision of selective and reduced integration. For solving non-linear equations modified Newton-

Raphson method is applied. The spread of plastic zone with respect to the load at the cross section of the plate can be 

studied by incremental finite element formulation. Von Mises and Tresca yield criteria have been applied for yielding of 

the material along with associated flow rule. 

Rao et al. [9]presented solution useful for finding stress distribution around holes in symmetric laminates as well as 

isotropic plates. They have studied Graphite/epoxy and Glass/epoxy laminates with square and rectangular holes. It is 

noted that the maximum stress and its location is mainly due to type of loading and the large stresses are obtained for 

shear loading.Kant et al.[10]utilizes a higher order shear deformation theory for Elasto-plastic analysis of thick plate 

bending using incremental finite element formulation. Von Mises yield criteria and associated flow rule has been modeled 

for yielding of the material. The results are compared with available benchmark and other solutions. 

 

III. THEORETICAL FORMULATION 

 

3.1 Theoretical formulation based on higher order shear deformation theory 

 

 

 

Fig. 1. Kinematics of deformation of a plate edge in various plate theories. 

 

 The displacement model for plates for these conditions is given by: 
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x and y are the rotations of the normals to the mid-plane about y and x axes respectively. 
*

x  and 
*

y are higher order 

term degenerated from Taylor‟s series for improving accuracy. The „u’ and „v’ are in-plane displacements and „w’ isthe 

transverse displacement.  
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3.2 Strain-displacement relationship and stress-strain relationship 

 

The linear relationships between these displacements and strains can be obtained by using the definitions of strains 

from the theory of elasticity (Mendelson, [11]): 
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The computer program, incorporating the higher order shear deformation and the corresponding finite element 

formulation for Elasto-Plastic analysis, developed by Rode and Kant [12], has been modified and validated for simply 

supported and clamped full plate and then used for analysis of plate with holes for various boundary conditions. 

 

IV. NUMERICAL EXAMPLE  

 

Example No. 1: Clamped square plate with 20% hole of size ( 
'

a ) 2.68 X 2.68, with a/h= 5, E= 30000, ν = 0.3, G = 11500 

and a = 6.0 units. It is subjected to uniformly distributed load. The non-dimensional parameters used in the formulation 

are: 

For non-dimensional displacement :
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For non-dimensional uniformly distributed load: 
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Example No. 2: Simply supported square plate with 20% hole of size ( 
'

a ) 2.68 X 2.68, with a/h= 5, E= 30000, ν = 0.3, G 

= 11500 and a = 6.0 units. It is subjected to uniformly distributed load The non-dimensional parameters used as above: 
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V. RESULT AND DISCUSSION 

 

Table 1: Non-dimensional displacement and non-dimensional load for simply supported and clamped plate subjected 

to uniformly distributed load. 

 

Plate a/h 

Actual Load App. 

(units) 

Non-dim. Disp. 

(units) 

Non-dim. Load 

(units) 

Elastic Collapse Elastic Collapse Elastic Collapse 

Simply 

Supp. 

05 4.1 6.0 0.07362 0.11297 10.9319 15.9979 

20 0.25 0.416 0.06284 0.13873 10.6652 17.747 

40 0.075 0.1135 0.07419 0.41231 12.8021 19.3738 

80 0.0175 0.028 0.0686 0.26441 11.9472 19.1155 

100 0.0125 0.0181 0.0764 0.35699 13.3315 19.3041 

Clamped 

05 12.00 20.25 0.05099 0.12724 31.997 53.9928 

20 0.7125 1.35 0.02928 0.15322 30.3959 57.5966 

40 0.15 0.345 0.02359 0.10786 25.596 58.8721 

80 0.0412 0.08625 0.02552 0.08384 28.1479 58.8547 

100 0.0285 0.054 0.02747 0.22101 30.3959 57.5923 

 

 

 

Fig. 2. Clamped square plate subjected to uniformly distributed load with 20% hole: Effect of thickness variation. 

 

 

Fig. 3. Simply supported square plate subjected to uniformly distributed load with 20% hole: Effect of thickness variation. 
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Fig. 4. Progress of plasticity for clamped square plate. 

 

 

Fig. 5.Progress of plasticity for simply supported square plate. 

 

Table 1 shows non-dimensionalized elastic and collapse loads to make them comparable. The effect of thickness 

variation can also be seen from the table.The Fig. 2 shows non-dimensional load versus non-dimensional displacement 

graph for clamped square plate having a central square hole with area 20% of the area of full plate, while Fig. 3 shows a 

similar graph for a simply supported square plate. The material properties considered in both the cases are same. The 

length of side of 20% hole area is 2.68 units, where side of full plate is 6.0 units. Five thicknesses ranging from thick to 

thin plate have been considered. The load has been applied incrementally from elastic to plastic range upto collapse. The 

gradual spread of plastic zone have been shown in Fig 4 for clamped plate and in Fig 5 for simply supported case. The a/h 

ratios considered in these figures are a/h=05 (Thick plate) and a/h=100 (Thin plate). 
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VI. CONCLUSION 

 

A clamped and simply supported square plates with 20% hole analysed with higher order shear deformation theory and 

presented here for various thicknesses. The other geometric and material properties have been kept constant. The load has 

been applied incrementally. The start and gradual spread of plasticity has been depicted in the form of tabulated results 

and plan diagrams of the plate. The actual collapse load of thick to thin plate reduces drastically with decreasing thickness 

as their stiffness is proportional to cube of their thickness. On non-dimensionalization, the collapse loads almost converge 

to the same value, which endorses the selection of our non-dimensionalizing parameters.  

Thus, normalization by non-dimensional parameters is essential to make them comparable on the same graph. The 

normalized displacements for simply supported plates are much higher as compared to those for clamped plates as seen in 

the graphs. The thick simply supported plate shows a brittle collapse while other plates depict ductile behaviour before 

collapse. 

The observation of the normalized load versus normalized maximum displacement, graph indicates a flexible 

normalized behaviour of thick plates as compared to thin plates as opposite to actual behaviour. Although the yielding of 

plate starts at a lower load, the load versus displacement graph shows linearity upto some higher load inspite of spread of 

plasticity across the plate. 

The plan view of the plate at increasing loads show that the plasticity starts at the centre of clamped edges of the plate 

followed by formation of another plastic zone at the centre of plate. At collapse, the two zones meet each other. On the 

other hand, plasticity starts at corners of the plate and corners of the hole. These two plastic zones spread towards each 

other as load increases, until they merge at collapse. However, simply supported thick plate collapse before they merge. 

The comparison of the limit elastic load with collapse load of plate shows that the collapse load is almost double that 

of elastic limit load for all thicknesses. This emphasizes the importance of the present study to ascertain the reserve 

strength of a plate even after the start of plasticity. 
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