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Abstract—  This paper gives a framework to model and control complex nonlinear system via Takagi-Sugeno fuzzy 

modelling and control. The nonlinear plant is first converted into regional fuzzy models for which the control gains 

are derived from linear matrix inequalities (LMIs). Then the local fuzzy controller are aggregated using a concept 

called parallel distributed compensation which yields the final control law. MATLAB simulation result are presented 

to analyse the stability and control of a two rule inverted pendulum and to show the effectiveness of the T-S fuzzy 

design approach.               
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I. INTRODUCTION 

 

In recent years, Takagi-Sugeno fuzzy model based control design have found variety of applications including ball and 

beam system [1], robot manipulator [2], control of DC series motor [3], induction motor [4], Permanent magnet 

synchronous motor, bidirectional inverter [5], DC-DC converter and many more. In T-S fuzzy control approach a 

nonlinear system is first converted into a T-S fuzzy model, then parallel distributed compensation scheme (PDC) is 

applied to design the T-S fuzzy controller, and the state feedback gains of which are calculated from the Linea matrix 

inequality (LMI) approach. 

The T-S fuzzy model based control provides the environment of developing systematic tools for the analysis and design 

of fuzzy control system and it does not require an expert knowledge thus reducing errors due to human input.  

In this paper we investigate the stability analysis of the continuous time system for the two rule inverted pendulum 

system and finding the solution to the LMIs formed using lyapunov stability conditions [6]. 

This paper is organised as follows: Section 2 describes the procedure of the construction of T-S fuzzy model. Section 3 

gives the overview of parallel distributed compensation technique. In section 4, stability analysis and LMIs involved are 

presented. In section 5, Simulink model for two rule inverted pendulum is given. Section 6 gives the MATLAB simulation 

results. Section 7 finally gives the concluding remarks.      

 

II. T-S FUZZY MODEL 

 

A T-S fuzzy system is described by fuzzy IF-THEN rules that represent locally linear input-output relationships of a 

system. The overall fuzzy model of the system is obtained by fuzzy aggregation of linear system models. The i
th

 rule of 

this continuous fuzzy system is of the following form: 
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Here and r is the number of model rules; 
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Where )(tz =[ )(,),(1 tztz p ] is the premise variable vector whose elements may be function of the states, external 

disturbances, and/or time,  
nRtx )( is the state vector, , Mij is the fuzzy input set, 

mRtu )( is the control input vector, 

qRty )(  is the output vector and 
nq
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i RCandRBRA   ,,  are state matrix, input matrix and output matrix 

respectively. Given a pair of )),(),(( tutx  the final outputs of the fuzzy systems is inferred as: 
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where Mij is the membership function of the j
th

 fuzzy set in the i
th

 fuzzy rule. Let, 
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where ))(( tzhi is the normalized weight for each rule. Then, (1) can be expressed as: 
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III.  PARALLEL DISTRIBUTED COMPENSATION (PDC)  

 

In designing a fuzzy controller for the control of a nonlinear system described by a T-S fuzzy model, PDC provides an 

easy and straightforward procedure [7]. In PDC design, a fuzzy control rule has to be designed for each corresponding rule 

of the fuzzy model. The designed fuzzy controller and the T-S fuzzy model share the same fuzzy sets in premise part. 

Consequent parts of the control rules consist of linear controllers. The i
th

 rule of fuzzy controller is given as: 
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The fuzzy control rules have linear controllers (state feedback controllers) in consequent parts, the overall nonlinear 

controller is obtained by fuzzy blending of the linear controllers and the following is obtained: 
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The design problem is now to calculate local feedback gains in consequent parts. 
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IV. STABILITY ANALYSIS AND LINEAR MATRIX INEQUALITY 

 

The main objective here is to select the feedback gain coefficient matrices, Fi that stabilizes the nonlinear system. 

Tanaka and sugeno derived the stability condition corresponding to a quadratic lyapunov function [6]. 
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Theorem 1: The equilibrium of the continuous fuzzy control system described by (8) is globally asymptotically stable if 

there exists a common positive definite matrix P such that 
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LMI formulation for stable controller design 

 

We first present a stable fuzzy controller design problem which is to determine the feedback gains ―Fi” for the 

continuous system using the stability conditions of Theorem 1. The conditions are not jointly convex in ―Fi” and ―P”. 

Now multiplying the inequality on the left and right by P
-1

 and defining a new variable X=P
-1

, we rewrite the conditions as 
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Define XFM ii  so that for X>0 we have
1 XMF ii . Substituting into the above inequalities yields: 
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Decay Rate Controller Design 

 

The speed of response is related to decay rate, that is, the largest Lyapunov exponent. the largest lower bound on the 

decay rate that we can find using a quadratic Lyapunov function can be found by solving the following GEVP 

(Generalized eigenvalue minimization problem)in X and α : 

 

Maximize α 

X,M1,….,Mr 

 

subject to conditions: 

X > 0, 
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Where X = P
-1

  ,   Mi = FiX. Decay rate fuzzy controller reduces to the stable fuzzy controller design when α = 0. 

 

Constraint on control input 

 

Assume that the initial condition x(0) is known. The constraint ǁ u(t) ǁ2 ≥ u is enforced at all times t ≥ 0 if the below 

LMIs hold in addition to above, 
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Where   X = P
-1 

 and Mi = FiX. 

 

Using these LMI conditions, we define a stable fuzzy controller design problem. 

 

V. T-S FUZZY MODELLING AND CONTROL OF INVERTED PENDULUM 

 

Consider the problem of balancing and swing-up of an inverted pendulum on a cart. Recall the equations of motion for 

the pendulum: 
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Where )(1 tx is angle (in radians) of inverted pendulum from the vertical, )(2 tx is angular velocity, m is the mass of the 

pendulum, M is the mass of the cart, 2l is length of pendulum, u is force applied to the cart (in newtons), a=1/(m+M) and g 

is gravity constant. 

               

Two-Rule Modeling and Control 

 

The control objective of this subsection is to balance the inverted pendulum for the approximate range 

)2/,2/()(1 tx . We first represent the system equations by a Takagi-Sugeno fuzzy model. To minimize the design 

effort and complexity, we try to use as few rules as possible. Therefore by using local approximation, 

 

When )(1 tx  is near zero, the nonlinear equations can be simplified as 
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When )(1 tx  is near 2/ , the nonlinear equations can be simplified as 
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Notice that when 2/1 x , the system is uncontrollable. Hence, we approximate the system by the following two-

rule fuzzy model: 
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Membership functions for Rules 1 and 2 are shown in Figure: 

 

 

Fig. 1  Membership functions ))(( 11 tzM  and ))(( 12 tzM  

 

Thus the open loop system is represented as: 
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Here u(t) is taken as unit step function. And hi(z(t)) represents the degree of Membership function where M1 and M2 are 

the Member Functions. M1 for Rule 1 and M2 for Rule 2. 
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Now fuzzy control rule corresponding to PDC control Law is as follows:  
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Now aggregating the local linear gains to obtain to a control input for the close loop nonlinear model: 
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Now putting the above value of control input in the open loop equation we obtain the Takagi Sugeno close loop fuzzy 

system. 
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 MATLAB Simulink Model: 

 

 

 Fig. 2 (a) Simulink implementation of close loop 2 Rule Inverted Pendulum. (b) Fuzzy Operation Block 
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VI. SIMULATION RESULTS 

 

The simulation are done on the MATLAB platform and solution to the LMIs are obtained using CVX [8] solver. 

Here angular position and control input of the inverted pendulum are taken as the outputs from the simulink block. 

Values of various parameters used are m=2 Kg, M=8 Kg, 2l=1m, g=9.8 m/s
2
. Here 3 cases have been taken. In case 1 

simple feedback controller gains are obtained by solving LMIs in (10), in case 2 and 3 Decay rate is introduced and 

corresponding controller gains are obtained by solving LMIs in (11) and in case 4 constraint on control input is introduced 

and associated controller gains are obtained by solving LMIs in (12). Note that all the outputs are taken at an initial 

angular position angle of 1 radian. 

 

Case 1: System response when simple state feedback gain are applied.  

 

F1=[-104.5687 -3.4057], F2=[-69.0274 -3.4087] 

 

  

 

Fig. 3 Angular position response for inverted pendulum. Fig. 4 Control input response for inverted pendulum 

 

Case 2: System response when decay rate of 1 is introduced then corresponding gains are: 

 

 F1=[-143.4662 -24.1904] , F2=[-107.9668 -24.2163]  alpha=1 

 

 

 

Fig. 5 Angular position response for inverted pendulum. Fig. 6 Control input response for inverted pendulum 

          with decay rate=1              with decay rate=1 
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Case 3: System response when decay rate of 5 is introduced the corresponding gains are: 

 

 F1=[-435.8022 -61.8046], F2=[-400.5157 -61.8569]. 

 

 

Fig. 7 Angular position response for inverted pendulum. Fig. 8 Control input response for inverted pendulum 

          with decay rate=5.              with decay rate=1 

 

Case 4: System response when along with decay rate constraint on control input is introduced then the corresponding 

gains are: 

 

  F1=[-287.3622 -60.7650], F2=[-219.8868 -55.2849]. 

 

 

Fig. 7 Angular position response for inverted pendulum. Fig. 8 Control input response for inverted pendulum 

          with decay rate=5 and u=350.            with decay rate=5 and u=350. 

 

 

VII. CONCLUSIONS 

 

In this paper, modeling and control of two rule inverted pendulum system based on T-S fuzzy approach is shown. 

Stability condition of this system can be handled as a LMI problem which can be solved using CVX solver and the 

response is taken from MATLAB simulink.  It can be seen from case 1 that although the inverted pendulum system has 

stabilized but the response is very slow and oscillatory. To improve the system response decay rate is introduced, first 

with the case 2 when decay rate is 1 and then in case 3 when decay rate is 5. It has been observed that with the increase in 

decay rate the response of the system becomes much faster but with the tradeoff that control input also increases 

simultaneously. Therefore in case 4 constraint on control input is introduced with the limit at 350 N. Simulation results 

demonstrates the effectiveness of this approach. 
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