

International Journal of Technical Innovation in Modern

Engineering & Science (IJTIMES)
Impact Factor: 3.45 (SJIF-2015), e-ISSN: 2455-2585

Volume 4, Issue 5, May-2018

IJTIMES-2018@All rights reserved 1395

Concurrency Control Algorithms for different databases: A review

Poonam Sharma

Computer Science Department, Amity School of Engineering and Technology,

Amity University, Haryana, India

e-mail:poonamsharma.2289@gmail.com

ABSTRACT:

Concurrency control is one of the most very important component in managing a transaction, which ensures the

correctness of shared data items. Most of the concurrency control techniques use locking mechanism to obtain

concurrency control. Transaction processing, concurrency control and recovery issues have played a major role in

conventional databases, and hence have been an important area of research for many decades. Concurrency control is a

mechanism applied in concurrent operations of database so that all the operation complete successfully without

interfering in the results of each other. Several research papers have been presented on concurrency control issues in

nested transaction environments. There are several concurrency control techniques that are proposed to prevent data

inconsistency. In this paper we are discussing the types of concurrency control techniques (lock based and lock free)

available. We are also comparing the lock based and lock-free techniques for concurrency control.

I. INTRODUCTION:

In today‟s age of information, database is an essential component of any Information system and it can be

traditional, distributed, centralized, real-time or mobile. Database is a structured organized way to arrange information. To

manage the database in any system, there are many approaches. Database systems are essential for many applications,

ranging from space station operations to automatic teller machines. A database state represents the values of the objects of

database that represent some real-world entity. The database state is changed from the previous state by the execution of a

user transaction. Individual transactions running in isolation are assumed to be correct. When multiple users access multiple

database objects residing on multiple sites in a distributed database system, the problem of concurrency control arises.

Concurrency control is a method used to handle conflicts that occur when the data is simultaneously accessed or altered in a

multiuser system. It is one of the most important components of transaction management and its main challenge is to ensure

that the shared data item when updated by multiple transactions at the same time will remain correct. In order to maintain

data consistency, concurrency control is used in Database Management Systems (DBMS) to ensure transactions isolation

whenever there are concurrent operations requesting access to the same object and it must be coordinated in order to avoid

inconsistencies. Concurrency control methodology permits the users to access the database in a multiple programmed

aspect while preserving the wrong idea that each user is executing on a dedicated system. The qualities of a concurrency

control algorithm have been evaluated on the basis of response time and throughput. The main dilemma in achieving this is

to prevent the database updates performed by one agent/client from interfering with database retrievals and updates are

performed by another agent/client. The problem is much worse in a distributed environment because: (i) agents/clients

access the data stored in different systems, and (ii) a concurrency mechanism at one system cannot be acknowledged

instantly. Two kinds of transactions are available in database management system. They are Read-only Transactions

(ROTs) and Update Transactions (UTs). These transactions should have the ACID properties. ACID properties are

Atomicity, Consistency (Concurrency), Isolation (Independence) and Durability (or Permanency).

The database concurrency control strategies in use are based on three mechanisms i.e. pessimistic (locking), Optimistic and

time-stamp method. There exist some hybrid techniques but still have a shortcoming similar to that of the three

fundamental techniques. Pessimistic or locking - Block an operation of a transaction, if it may cause violation of the rules,

until the possibility of violation disappears. Blocking operations is very much involved with performance reduction.

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)
Volume 4, Issue 5, May-2018, e-ISSN: 2455-2585,Impact Factor: 3.45 (SJIF-2015)

IJTIMES-2018@All rights reserved 1396

Optimistic -Delay the checking of whether a transaction meets the isolation and other integrity rules eg. serializability and

 recoverability) until its end, without blocking any of its (read, write) operations and then abort a transaction to prevent the

violation, if the desired rules are to be violated upon its commit. An aborted transaction is immediately restarted and re-

executed, which incurs an obvious overhead (versus executing it to the end only once). If not too many transactions are

aborted, then being optimistic is usually a good strategy. Time stamp -Timestamp is a unique identifier created by the

DBMS to identify the relative starting time of a transaction. Typically, timestamp values are assigned in the order in which

the transactions are submitted to the system. So, a timestamp can be thought of as the transaction start time. Therefore,

time stamping is a method of concurrency control in which each transaction is assigned a transaction timestamp.

 Some of the main goals of concurrency control algorithms are (i) correctness, as it the first and foremost goal of

any system. Each transactions integrity must be kept while transactions are running concurrently. Thus the integrity of the

entire transaction is maintained. (ii) Serializability, many problems can occur in DBMS updating if serializability is not

maintained. (iii) Recoverability, it means that no committed transaction in a schedule has read the data written by an

aborted transaction, these data disappear from the database after the transaction get aborted. (iv) Replication, the process of

copying the data at more than one location for higher rate of availability. In this paper we will be discussing the lock based

concurrency control technique and the lock-free concurrency control technique. [3]

II. LOCK BASED CONCUERENCY CONTROL:

A lock is a main-memory data item which belongs to an active transaction that permits the transaction access to a

particular part of the database. A transaction can execute an action like read, write, insert, delete on a part of the database if

and only if it has properly locked the relevant part of the database. A lock includes information about its name, mode,

duration, and the owning transaction. The lock name identifies the data item or the set of data items in the database that is

the target of the lock. The name can be used to categorize locks into logical and physical locks. The name of a logical lock

identifies a part of the logical database, such as a single tuple in a relation, the set of tuples within a key range, or a whole

relation. The name of a physical lock identifies a part of the physical database, such as the location of a tuple in a specific

data page, or a whole page or file, or a node or a bucket in an index structure.

 Locking is the most commonly used method for enforcing transactional isolation. Most database management

systems apply some kind of locking, possibly grouped with some other mechanism such as transient versioning. With

locking-based concurrency control, transactions are required to protect their actions by acquiring appropriate locks on the

parts of the database they operate on. A read action on a data item is usually protected by a shared lock on the data item,

which prevents other transactions from updating the data item, and an update action is protected by an exclusive lock,

which prevents other transactions from reading or updating the data item. If a transaction requests a lock on a data item in a

situation in which some other transaction holds an exclusive lock on the data item, the requesting transaction has to wait for

the conflicting lock to be released. Most often this means waiting for the other transaction to commit and all the locks still

held by a transaction at commit time are released when the transaction has committed. Database systems equipped with

lock-based protocols use a mechanism by which any transaction cannot read or write data until it acquires an appropriate

lock on it. Locks are of two kinds .Binary Locks − A lock on a data item can be in two states; it is either locked or

unlocked. Shared/exclusive − this type of locking mechanism differentiates the locks based on their uses. If a lock is

acquired on a data item to perform a write operation, it is an exclusive lock. Allowing more than one transaction to write on

the same data item would lead the database into an inconsistent state. Read locks are shared because no data value is being

changed.

II.I TYPES OF LOCK PROTOCOL AVAILABLE:

i. Simplistic Lock Protocol

Simplistic lock-based protocols allow transactions to obtain a lock on every object before a 'write' operation is performed.

Transactions may unlock the data item after completing the „write‟ operation.

ii. Pre-claiming Lock Protocol

Pre-claiming protocols evaluate their operations and create a list of data items on which they need locks. Before initiating

an execution, the transaction requests the system for all the locks it needs beforehand. If all the locks are granted, the

transaction executes and releases all the locks when all its operations are over. If all the locks are not granted, the

transaction rolls back and waits until all the locks are granted.

https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Serializability#Correctness_-_recoverability

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)
Volume 4, Issue 5, May-2018, e-ISSN: 2455-2585,Impact Factor: 3.45 (SJIF-2015)

IJTIMES-2018@All rights reserved 1397

 Lock acquisition Releasing phase

 Phase

 Time

T Begin T End

 Fig.1 Pre-claiming lock protocol

iii. Two-Phase Locking 2PL

This locking protocol divides the execution phase of a transaction into three parts. In the first part, when the transaction

starts executing, it seeks permission for the locks it requires. The second part is where the transaction acquires all the locks.

As soon as the transaction releases its first lock, the third phase starts. In this phase, the transaction cannot demand any new

locks; it only releases the acquired locks.

Lock acquisition Releasing phase

 phase

 Time

 T begin T end

 Fig.2 Two phase locking

Two-phase locking has two phases, one is growing, where all the locks are being acquired by the transaction; and the

second phase is shrinking, where the locks held by the transaction are being released. To claim an exclusive (write) lock, a

transaction must first acquire a shared (read) lock and then upgrade it to an exclusive lock

iv. Strict Two-Phase Locking

The first phase of Strict-2PL is same as 2PL. After acquiring all the locks in the first phase, the transaction continues to

execute normally. But in contrast to 2PL, Strict-2PL does not release a lock after using it. Strict-2PL holds all the locks

until the commit point and releases all the locks at a time.[2]

Lock acquisition phase releasing phase

 Time

 T begin T end

 Fig.3 Strictly two phase locking

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)
Volume 4, Issue 5, May-2018, e-ISSN: 2455-2585,Impact Factor: 3.45 (SJIF-2015)

IJTIMES-2018@All rights reserved 1398

III. LOCK-FREE CONCURRENCY CONTROL:

Concurrency control is one of the most important components of transaction management, which ensures the correctness of

shared data items. Most of the existing concurrency control techniques use locking mechanism to achieve concurrency

control, which leads to transaction starvation and deadlock. On the other hand, the non-locking techniques (i.e. optimistic

and timestamp ordering) are associated with high abortion rate and excessive transaction restart. The technique allows

mobile devices to freely read data items and allowed to pre-commit while in disconnection mode, and latter propagate the

pre-committed data during reconnection for global commitment. Optimistic strategies allows each user to freely access a

portion of the database without lock, this feature makes optimistic schedules to be deadlock free but it has the problem of

higher transaction restart and higher rate of abortion. Timestamp ordering has the advantage of non waiting and low rate of

abortion but it‟s associated with the recovery failure and cascade rollback. Thus, a hybrid strategy is necessary that will

combine the features of optimistic and timestamp ordering to achieve a low abortion rate, low transaction restart, non

cascade rollback, deadlock free schedules, and recoverable schedules.[1]

III.I LOCK-FREE HYBRID CONCURRENCY

 CONTROL STRATEGY

A lock-free hybrid concurrency control strategy proposes the combination of the features of both optimistic and timestamp

ordering strategies. Like in Optimistic strategy, mobile host can freely copy data item and is free to pre-commit locally but

later the results are propagated to the coordinator for making the final commit decision. As in Timestamp Ordering each

data item is associated with the timestamp of the last transaction that read it and the timestamp of the last transaction that

wrote it. These timestamps are used to make final decision at commit phase. Combining the features of these two strategies,

mobile client connect to the server just in the beginning and end of transaction; this reduce communications to minimum.

Transaction operators (i.e. read/write) and timestamps (i.e. read/write timestamps) related to particular transactions are

managed based on the concept of timestamp ordering schedulers and decisions are made regarding abortion or completion

of a transaction. Therefore, this will reduce the number of aborted transactions significantly. Transactions are accomplished

in two phases: First phase is the Reading Phase which is pictorially represented in Figure 1 while the second Phase is

called Commit Phase.

READ PHASE:

 Fig.4 Reading phase

Mobile host 1

1

Mobile host 2

Base station
3

2

1

Data Base

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)
Volume 4, Issue 5, May-2018, e-ISSN: 2455-2585,Impact Factor: 3.45 (SJIF-2015)

IJTIMES-2018@All rights reserved 1399

COMMIT PHASE:

 6

Mobile host 1

Mobile host 2

Fig .5 Committing phase

 Reading Phase:

Step 1: Mobile host identified by TransactionId issue a

request to read a particular data items.

Step 2: Database is scanned for the required data items and the base station records transaction details. The information will

help during conflicts resolution.

Step 3: The required data items are read by the mobile host and the transaction leaves read timestamp (rts) as foot print on

the data items. It is free to update the copied data items at its own site (local commit) but this would not affect the original

data in the database.Go to commit phase

Commit Phase

Step 4: If transaction commits locally, during reconnection the results are submitted to the Basestation to decide on the final

commitment. The basestation check to ensure other mobile hosts are not using the same data items modified by the current

transaction. If any mobile host is using similar data item it is ask to restart its transaction using the new values of the data

item (Conflict Resolution) (step 7).

Step 5: If no other mobile host using similar data item,

base-station updates the data items.

Step 6: All mobile hosts are informed about the final

commit.[1]

 Mobile environment face several challenges such as power consumption and frequent transmission interference due to the

frequent connection and disconnection of mobile host while transaction is taking place. These challenges make simulation

an invaluable tool for understanding the operation of this environment. Whilst real test (i.e. test beds or real life

implementation and analytical models) are crucial for understanding the performance of mobile protocols, simulation has

been chosen as method of study in this research because it provides an environment with specific advantages over the other

methods. The performance in real database systems is determined by several parameters. Some of them are determined by

the hardware and operating system architecture, some are set by the administrator, and others are results of the

characteristics of the transactions done on the system. Some simulation parameters that have been used in the experiment

are shown in the table below.[1]

4

6

5

7

Base station Database

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)
Volume 4, Issue 5, May-2018, e-ISSN: 2455-2585,Impact Factor: 3.45 (SJIF-2015)

IJTIMES-2018@All rights reserved 1400

Figure 6 depicts the effect of transaction density on the performance of the concurrency control strategies in terms of

number of aborted transactions. The figure shows that the number of aborted transactions in lock-free strategy is lower

compared to optimistic and timestamp ordering strategies. For instance, when the transaction density is increase to 500, 49

transactions were aborted in lock-free strategy, 65 transactions were aborted in optimistic strategy while 80 transactions

were aborted in timestamp strategy. This better performance of lock-free is as a result of its feature which restarts

transaction that is aborted in validation phase with a new value as opposed to the basic optimistic and timestamp ordering

approaches that aborted the whole transaction which fails in first validation.

Fig.6 Abort Rate for Hybrid, Optimistic and Timestamp Strategies

Moreover, increasing the number of transactions in all general ships will encounter the possibility for more

transaction to access similar data items hence increases the number of aborted transaction. For example, when the number

of transaction is 100 only 4 (4%) transaction is aborted in the case of lock-free strategy but when the density is increased to

400 transactions then 39 (10%) transactions are aborted. Similarly in optimistic strategy with 100 transactions, 5 (5%)

transactions is aborted while for 400 transactions, 50 (13%) transactions were aborted. Same in the case of timestamp

ordering aborts 10 (10%) transactions out of 100 and 70 (18%) out of 400 transactions.[1]

0
10
20
30
40
50
60
70
80
90

100

50 100150 200 250 300 350 400 450 500

timestamp

optimistic

hybrid

Parameters

 Value

Min Max

Number of

transactions

50 500

Interval between

transactions

100ms 100ms

Operations in short

transactions

1 2

Operations in long

transactions

2 10

Read probability 60%

Write probability 40%

Restart delay 500ms

Scheduler type Optimistic,timestamp,hybrid

Abort probability 0.1%

Block size 4kb

A
b

o
rt

ed

 A
b

o
rt

ed
 T

ra
n

sa
ct

io
n

Number of transactions

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)
Volume 4, Issue 5, May-2018, e-ISSN: 2455-2585,Impact Factor: 3.45 (SJIF-2015)

IJTIMES-2018@All rights reserved 1401

 Fig .7 Response Time for Lock-Free Hybrid, Optimistic and Timestamp.

Figure 7 shows respectively the response time for lock-free, optimistic and timestamp ordering strategies .From the result

we can see that, performance of lock-free strategy increases almost linearly as the transaction density increases. Similarly,

lock-free strategy has a smaller response time as compared to timestamp ordering strategy, which in turn performs better

than optimistic strategy. For instance, as the transaction density increases to 400, lock-free strategy has 13.5ms response

time, timestamp-ordering with 17ms while optimistic strategy response in 19ms. Hence lock free strategy is found to be

better compared to the available lock based strategies.

IV. CONCLUSION:

Concurrency control is one of the important building blocks of transaction management. Most concurrency control method

used for real-time database system solves consistency issue. In this paper we have discussed in detail the various goals of

concurrency control and the different approaches. The different types of concurrency control algorithms and the advantages

of the different types are also discussed in here. In this paper, a lock-free hybrid concurrency control strategy was presented

which is based on optimistic and timestamp concept. The performance of hybrid concurrency strategy was analyzed under

varying transaction densities.

REFERENCES:

[1]Sirajo Abdullahi Bakura, Aminu Mohammed “Lock-Free Hybrid Concurrency Control Strategy For Mobile

Environment”

[2]S. Sippu, E. Soisalon-Soininen, “Transaction Processing”

Springer International Publishing Switzerland 2014

[3] Sukhdev Singh Ghuman,”Concurrency Control in DBMS- A Review” IJCSMC, Vol. 5, Issue. 5, May 2016, pg.599 –

602

[4] Sheetlani Jitendra and Gupta V.K. “Concurrency Issues of Distributed Advance Transaction Process” Research Journal

of Recent Sciences __ ISSN 2277-2502 Vol. 1 (ISC-2011), 426-429 (2012)

[5] Samuel Kaspi and Sitalakshmi Venkatraman, Performance Analysis of Concurrency Control Mechanisms for OLTP

Databases” International Journal of Information and Education Technology, Vol. 4, No. 4, August 2014

[6] Ms. Nyo Nyo Yee “Concurrency Control Mechanism for Nested Transactions in Mobile Environment “

0

5

10

15

20

25

50 100150200 250 300 350 400 450 500

timestamp

optimistic

hybrid

