
 

 
International Journal of Technical Innovation in Modern 

Engineering & Science (IJTIMES) 
Impact Factor: 3.45 (SJIF-2015), e-ISSN: 2455-2585 

Volume 4, Issue 01, January-2018 

 

IJTIMES-2018@All rights reserved   90 

ANN model development for Rainfall-Runoff Modelling. 
 

Lateef Ahmad Dar  

 

National Institute of Technology, Srinagar, India  

 

ABSTRACT :- The Artificial Neural Network (ANN) approach has been successfully used in many 

hydrological studies especially the rainfall-runoff modelling.  This study deals with a detailed description of 

development of Artificial Neural Network models. The various aspects of the model development and the 

processes undergoing to develop those models are discussed in this study.  

 

KEYWORDS: Artificial Neural Networks (ANNs); Rainfall-Runoff Process  
 

Introduction 

 

Rainfall-Runoff process is a very complex phenomenon. The calculation of Runoff generated over a catchment in 

response to Rainfall is a very hard task and there are various parameters involved. Over the years researchers have 

developed many models to simulate this process. Based on the problem statement and on the complexities involved, 

these models are categorized as empirical, black-box, conceptual or physically-based distributed models. Physically 

based distributed models are very complex and required too many data and tedious for the application purpose. The 

conceptual models attempt to represent the known physical process occurring in the rainfall-runoff transformation in a 

simplified manner by way of linear or nonlinear mathematical formulations but their implementation and calibration is 

complicated and time consuming. While black-box models, which establish a relationship between input and the output 

functions without considering the complex physical laws governing the natural process such as rainfall-runoff 

transformation. ANN is one such black box models and is able to model and simulate the hydrological processed with 

impressive performance. This study describes the various aspects of ANN model development right from data 

preparation, data optimization to model optimization.  

 Study Area and Data Used  
The study area spatially lies between 33° 21′ 54″ N to 34° 27′ 52″ N latitude and 74° 24′ 08″ E to 75° 35′ 36″ E longitude 

with a total area of 8600.78 sq.kms (Fig.1). It covers almost all the physiographic divisions of the Kashmir Valley and is 

drained by the most important tributaries of river Jhelum. Srinagar city which is the largest urban centre in the valley is 

settled on both the sides of Jhelum River and is experiencing a fast spatial growth. Physical features of contrasting nature 

can be observed in the study area that ranges from fertile valley floor to snow-clad mountains and from glacial barren 

lands to lush green forests. 

 

 
 

Fig.1 Location Map of the Study Area (Source: Generated from SOI toposheets, 1961) 

 



 
International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) 

Volume 4, Issue 01, January-2018, e-ISSN: 2455-2585, Impact Factor: 3.45 (SJIF-2015) 
 

IJTIMES-2018@All rights reserved   91 

Input Data Preparation 

The rainfall data was available at three stations in the catchment. There is always spatial variation in precipitation hence 

the rainfall at these three stations needs to be normalized over the whole catchment so it can be fed to the neural network. 

A true areal representation of the rainfall is determined by drawing Thessian polygons and calculating the average 

rainfall over the whole catchment.  

 
Fig.2 Thessian polygons for various stations 

 

 

Table 1: Calculated Thessian weights or various stations selected in the catchment. 

 

STATION  NAME THESSIAN WEIGHT (%) 

PAHALGAM 23.60 

SRINAGAR 41.90 

QAZIGUND 34.50 

 

The influencing stations and their corresponding Thessian weights are presented in the table 1. Using the above weights, 

the corresponding daily rainfall data of the stations, the average areal precipitation of the catchment has been estimated. 

                             

Identification Of The Input Vector 

Identification of the no. of flow series was carried by the predicative analysis. The selection of the predictors was carried 

out on the basis of p-test.  



 
International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) 

Volume 4, Issue 01, January-2018, e-ISSN: 2455-2585, Impact Factor: 3.45 (SJIF-2015) 
 

IJTIMES-2018@All rights reserved   92 

 
 

Fig.3: Predicative analysis for the number of input flow series. 

 

The predicative analysis suggests incorporating flow values with three days lag in the input vector to the network. 

 

Identifying the Number Of Rainfall Patterns In The Input Vector 

The number of previous day‟s rainfall which influences the flow rate to be predicted was determined in the trial and error 

manner. The procedure that was used to identify the number of rainfall patterns as input to the network is summarized 

below. 

A sample model is selected by representing stream flow at the present time„t‟ as a function of precipitation at (t-1) and 

stream flow at t-1,t-2,t-3 .The model can then be represented as 

    Q(t) =f [ P(t-1),Q(t-1),Q(t-2),Q(t-3) ] 

Various ANN configurations were trained and tested using the model the no of neurons in the hidden layer in BPN were 

varied from 1 to 20 during training. Among the models the models are selected which give better results. The 

precipitation at time (t-2) is added as an additional input parameter to the above model and the network is trained again, 

hence the model becomes 

    Q(t) =f [ P(t-1),P(t-2),Q(t-1),Q(t-2),Q(t-3) ] 

If the goodness of fit statistics for the present model are significantly different from the previous model, then the 

precipitation at time (t-3) is added as an as another input parameter and we go on adding the input precipitation 

parameters till time (t-5). 

 

Model Development 

In the present study two types of ANN‟s viz. back propagation network (BPN) and radial based function network (RBF) 

were developed. These models were developed in MATLAB environment using ANN tool-pack. 

 

Back Propagation Network 

Back propagation is the most widely used of the neural networks and has been applied successfully in the application 

studies in a wide range of areas. 

The back propagation algorithm involves a forward propagating step followed by a back propagating step. Both the 

forward and back propagation steps are done for each pattern presentation during training. The forward propagation step 

begins with the presentation of an input pattern to the input layer of the network, and continues as activation level 

calculation (activation level parameter associated with each processing unit is its output value) propagate forward 

through the hidden layers in each successive layer, every processing unit sums its inputs and then applies a transfer 

function to compute its output. The output layer of units then produces the output of the network. The back-propagation 

step begins with the comparison of the network‟s output pattern to the target vector, when the difference of error is 

calculated. The back propagation step then calculates error values for hidden units and changes for their incoming 

weights , starting with the output layer and moving backward through the successive hidden layers. In this back 



 
International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) 

Volume 4, Issue 01, January-2018, e-ISSN: 2455-2585, Impact Factor: 3.45 (SJIF-2015) 
 

IJTIMES-2018@All rights reserved   93 

propagation step, the network corrects its weight in such a way as to decrease the observed error. A general structure of 

the BPN is depicted in the figure. For getting the best network architecture we have to optimise the neural network i.e., 

we have to optimize the neural network for the number of hidden layers and the number of neurons in the hidden layers. 

 

 
Fig.4: Network architecture of a BPN network. 

 

 
Fig.5: View of dialogue box for designing the network. 

 

 
Fig.6: View of the network generated 



 
International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) 

Volume 4, Issue 01, January-2018, e-ISSN: 2455-2585, Impact Factor: 3.45 (SJIF-2015) 
 

IJTIMES-2018@All rights reserved   94 

 
Fig.7: Dialogue box generated for training the network. 

 

 
 

 

Fig.9:Dialogue box showing performance during training 

 

 

Radial Basis Function (RBF) network 

The Radial Basis Function (RBF) network is a variant of the standard feed-forward network. It can be considered as a 

two-layer feed-forward network in which the hidden layer performs a fixed non-linear transformation with no adjustable 

internal parameters. The output layer, which contains the only adjustable weights in the network, then linearly combines 

the outputs of the hidden neurons [after Chen et al., 1991]. The RBF network is trained by determining the connection 

weights between the hidden and output layer through a performance training algorithm. The hidden layer consists of a 

number of neurons and internal parameter vectors called „centers', which can be considered the weight vectors of the 

hidden neurons. A neuron (and thus a centre) is added to the network for each training sample presented to the network. 

The input for each neuron in this layer is equal to the Euclidean distance between an input vector and its weight vector 

(centre), multiplied by the neuron bias. The transfer function of the radial basis neurons typically has a Gaussian shape. 

Fig.8: Dialogue box determining the 

performance during training.  



 
International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) 

Volume 4, Issue 01, January-2018, e-ISSN: 2455-2585, Impact Factor: 3.45 (SJIF-2015) 
 

IJTIMES-2018@All rights reserved   95 

This means that if the vector distance between input and centre decreases, the neuron‟s output increases (with a 

maximum of 1). In contrast, radial basis neurons with weight vectors that are quite different from the input vector have 

outputs near zero. These small outputs only have a negligible effect on the linear output neurons. 

 

 
Fig.10:View of dialogue box for designing the RBF  network . 

                             

               

 

         If a neuron has an output of 1 the weight values between the hidden and output layer are passed to the linear output 

neurons. In fact, if only one radial basis neuron had an output of 1, and all others had outputs of 0's (or very close to 0),  

the output of the linear output layer would be the weights between the active neuron and the output layer. This would, 

however, be an extreme case. Typically several neurons are always firing, to varying degrees. 

Summarizing, a RBF network determines the likeness between an input vector and the network‟s centers. It consequently 

produces an output based on a combination of activated neurons (i.e. centers that show a likeness) and the weights 

between these hidden neurons and the output layer. The primary difference between the RBF network and back-

propagation lies in the nature of the nonlinearities associated with hidden neurons. The nonlinearity in back-propagation 

 Fig.11: Dialogue box determining the 

performance during training.  

Fig.12: Dialogue box showing   the training  

performance of RBF. 



 
International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) 

Volume 4, Issue 01, January-2018, e-ISSN: 2455-2585, Impact Factor: 3.45 (SJIF-2015) 
 

IJTIMES-2018@All rights reserved   96 

is implemented by a fixed function such as a sigmoid. The RBF method, on the other hand, bases its nonlinearities on the 

data in the training set [after Govindaraju, 2000]. The original RBF method requires that there be as many RBF centers 

(neurons) as training data points, which is rarely practical, since the number of data points is usually very large [after 

Chen et al., 1991]. A solution to this problem is to monitor the total network error while presenting training data (adding 

neurons), and to stop this procedure when the error does no longer significantly decrease. RBF networks are generally 

capable of reaching the same performance as feed-forward networks while learning faster. On the downside, more data is 

required to reach the same accuracy as feed-forward networks. According to Chen, Cowan and Grant [1991], RBF 

network performance critically depends on the centres that result from the inputted training data. In practice, these 

training data are often chosen to be a subset of the total data, which suitably samples the input domain. 

 

 
Fig.13: Network architecture of an RBF network. 

Post Training Analysis  

The performance of a trained network can be measured to some extent by the errors on the training, validation and 

test sets, but it is often useful to investigate the network response in more detail.  One option is to perform a regression 

analysis between the network response and the corresponding targets. The “postreg” is designed to perform this analysis.  

The following commands were used to perform a regression analysis on the network that was previously 

trained: 

a = sim(net,p); 

[m,b,r] = postreg(a,t) 

Here the network output and the corresponding targets are passed to postreg. It returns three parameters. The 

first two, m and b, correspond to the slope and the y-intercept of the best linear regression relating targets to network 

outputs.  For a perfect fit (outputs exactly equal to targets), the slope would be 1, and the y-intercept would be 0. The 

third variable returned by postreg is the correlation coefficient (R-value) between the outputs and targets. It is a measure 

of how well the variation in the output is explained by the targets. If this number is equal to 1, then there is perfect 

correlation between targets and outputs. 

  

 
      

     Fig.14: Dialogue box showing   the training  performance of RBF. 



 
International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) 

Volume 4, Issue 01, January-2018, e-ISSN: 2455-2585, Impact Factor: 3.45 (SJIF-2015) 
 

IJTIMES-2018@All rights reserved   97 

In order to convert the normalized outputs back into the same units that were used for the original targets, postmnmx was 

used. The following commands were used to simulate the network that was trained in the previous code, and then convert 

the network output back into the original units. 

on = sim(net,pn); 

o = postmnmx(on,mint,maxt); 

The network output of ANN will correspond to the normalized targets tn. The un-normalized network output „o‟ is in the 

same units as the original targets t. The unormalised out-put 'o' can then be compared with the observed output by various 

statistical indices. 

 

Conclusion. 

 

This paper presents a detailed explanation of various aspects of ANN model development rainfall-runoff process. These 

models are very easy and less time consuming as compared to physical or conceptual models and hence are more likely 

to be used in future and one needs to optimize the models for better performance by repeatedly changing the network 

structure till the model yields maximum accuracy.  

 

References 

 

1. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a) Artificial neural networks 

in hydrology. I: preliminary concepts. J. Hydrol. Eng. ASCE 5(2), 115-123. 

2. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b) Artificial neural networks 

in hydrology. II: hydrologic applications. J. Hydrol. Eng. ASCE 5(2), 124-137. 

3.Dawson, C.W. & Wilby, R.L. (1998) An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J. 

43(1), 47-65. 

4. Dawson, C.W. & Wilby, R.L. (2001) Hydrological modelling using artificial neural networks. Prog. Phys. Geog. 

25(1), 80-108. 

5. Garson, G.D. (1991) Interpreting neuralnetwork connection weights. Artificial Intell. Expert. 6, 47-51. 

6. Giustolisi, O. & Laucelli, D. (2005) Improving generalization of artificial neural networks in rainfall-runoff modelling. 

Hydrol. Sci. J. 50(3), 439-457. 

7. Hsu, K.L., Gupta, H.V. & Sorooshian, S. (1995) Artificial neural network modeling of the rainfall-runoff process. Wat. 

Resour. Res. 31(10), 2517-2530. 

8. Jain, A. & Srinivasulu, S. (2006) Integrated approach to model decomposed flow hydrograph using artificial neural 

network and conceptual techniques. J. Hydrol. 317, 291-306. 


