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Abstract—This project deals with the study of feasibility and later on design compact of a three DOF 

robotic joints to replace the single DOF of the hip actuator of the commercially available exoskeletons. In 

this project a novel spherical parallel manipulator (SPM),named Riflex with three degree-of-freedom 

(DOF) hip exoskeleton system that is capable of providing decoupled or combined 3-DOF rotational 

motion to a separate and passive target joint (i.e. the hip joint) is proposed. The kinematic analysis , 

performance Indices of the parallel manipulator are studied. 
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I. INTRODUCTION 

 

 Numerous people require portability assistive advancements to stay aware of their day by day life and the interest for 

such gadgets ordinarily increments with age. A wearable exoskeleton robot is an outside basic mechanism with joints and 

links comparing to those of a human body. The exoskeleton specifically associates and synchronizes with human body to 

improve or bolster its normal developments so as to expand the absence of intensity in directing day by day exercises. 

The exoskeleton transmits torques from its actuators through unbending exoskeletal links to the human joints, in this 

manner giving versatility and enlarging the quality. 

The most present-day exoskeletons are made out of kinematic open chains: sequentially associated single-DOF turning 

or kaleidoscopic joints between inflexible linkages. Be that as it may, parallel manipulators (PMs) have preferred 

execution over their sequential manipulator partners as to situating exactness, speed, constrain application, and payload-

to-weight proportion. In this way, so as to enhance the automated execution and kinematic usefulness of exoskeletons, 

we propose the utilization of parallel robots combined with a mechanical structure that transmits movements to the 

focused on body part in an agreeable non-prohibitive way.  

One parallel automated structure that has potential for use in such an application is the 3-RRR spherical parallel 

manipulator. This paper researches the execution of the 3-RRR with regards to exoskeleton applications. In particular, 

manipulability, expertise, and rotational affectability execution lists are assessed for two diverse body-interfacing plans 

of the manipulator when it is connected as a hip exoskeleton gadget; here it is accepted that the manipulator underpins 3-

DOF rotational movements of the upper leg as for the pelvis. Our discoveries recommend that a 3-RRR manipulator can 

be utilized as the hip actuator in an exoskeleton framework. 

Kinematic considerations for the 3-RRR manipulator 

Kinematic architecture : 

 
The above device is considered as a 3-DOF spherical system since the majority of its moving linkages perform 

spherical movements about a typical point, O, which is stationary as for its base structure. That is, every one of particles' 

movements inside the framework can be unambiguously portrayed by outspread projections on the surface of a unit circle 

focused at the previously mentioned stationary point. Subsequently, the main passable lower-pair joint inside a spherical 
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component's appendages is a revolute joint; besides, all joint tomahawks must converge at the regular stationary point 

referenced previously. Note that two striking encapsulations of the 3-RRR controller are the Agile Eye and Agile Wrist. 

Albeit mechanically particular, these two encapsulations have a similar converse kinematics strategy, which is surveyed 

further in the paper. 

 

INVERSE KINEMATICS DERIVATION 

The direction vectors u1, u2, and u3 specify the rotational axes of the system’s three active Ai joints, as shown in 

Figure. These vectors have constant values with respect to the global frame (with origin O) because they correspond to 

fixed joints. Next, input scalar variables 1, 2, and 3 define the angular states of the respective active joints. Direction 

vectors w1, w2, and w3 in turn specify the rotational axes of the joints between the three proximal–distal link pairs (i.e. the 

Ci joints). These vectors vary in element values with respect to the global frame because they correspond to free joints. 

The final set of direction vectors, v1, v2, and v3, specify the rotational axes of the joints between the three connection 

points of the distal links to the end effector (i.e. the Bi joints). Again, these vectors vary with respect to the global frame 

because they correspond to free joints. 

 
Scalar constant α1 specifies the angle between each actuated Ai joint and the corresponding proximal Ci joint within 

the plane containing both of these joints as well as the global origin O. The value of α1 used for the 3-RRR design 

analyzed here is 900. The second scalar constant α2, specifies the angle between each proximal Ci joint and the 

corresponding distal Bi joint within the plane containing both of these joints as well as the global origin. The value of α2 

used for the 3-RRR design considered here is also 900. Third, scalar constant β indicates the angle between the vi 

direction vectors and the global z-axis when the device is in its ‘home’ position (i.e. when the plane created by Ai joint 

positions is parallel to that defined by the Bi points). The value of  β used here is 54.75. Fourth, scalar constant √ 

indicates the angle between the ui direction vectors and the vertical axis (i.e. the global z-axis). Unlike β , this value is 

constant for all mechanism states because the joints corresponding to the ui direction vectors are fixed relative to the 

global frame. The value of √ used in this analysis is also 54.75. 

Finally, scalar constants η1, η2 ,η3 are used to specify the locations of the active joints associated with direction vectors 

u1, u2, and u3 and ‘home positioned’ distal passive joints associated with v1, v2, and v3 within the global x-y plane. 

Measured with respect to the positive y-axis, the values of η1, η2 ,η3 are 0, 120, and 240, respectively. Using this 

convention, ηi directly specifies the directions ui in the global x-y plane and specifies the directions vi in the global x-y 

plane when added to 600 and the mechanism is in its ‘home’ position. Note that the above parameter values are not 

independent, as they are related through geometry. 

Equations for the ui direction vectors can be derived in terms of the ηi and √ parameters discussed above. This 

derivation involves the following fixed-frame rotation process: rotation of a local frame F1 (i.e. originally identical to the 

global frame) by (90 - η) about the global 0y-axis and then rotation of F1 by ηi about the  0z-axis. This overall 

transformation is represented mathematically. Note that a superscript ‘0’ indicates an axis or vector expressed with 

respect to the global frame. 

 

 
It follows that the x-axis of the resulting R01 orientation frame is equal to the direction vector ui. 
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Direction vectors wi are in turn related to the corresponding ui vectors through a fixed rotation by α1 within the plane 

containing O, Ai, and Ci, along with a variable rotation dependent on actuator angle θi. The parameterization of this 

transformation can be considered as a set of current frame rotations: first a rotation of θi about the local x-axis and then a 

rotation of α1 about the updated local z-axis. In matrix format, an expression for this is as follows. 

 

 
 

Now, to obtain expression in terms of the global coordinate system, the set of rotations described above must be pre-

multiplied by R01. Finally, the set of direction vectors wi is obtained from the resulting matrix set as the x-axes for each 

Wi, as shown below. 

 
Similarly to the derivation for ui vectors as summarized above , the vi vectors can be established via two spatial 

rotations as follows when the device is in its ‘home’ position. 

 
Again, vi is given as the x-axis component of the orientation matrix shown in equation . To determine the vi directions 

after the mechanism’s end-effector has undergone roll, pitch, and/or yaw rotations, R03 must be pre-multiplied by another 

transformation. 

 
where Rrpy represents the orientation of the end-effector with respect to the global frame. If it is assumed that Rrpy is 

expressed as fixed-frame rotations about the global x-axis by θ, y-axis by ϕ , and z-axis by ψ , respectively, then the vi 

vector can be explicitly derived as follows. 

 
Given that all direction vectors wi and vi are of unit length, the angle between corresponding wi and vi vectors is α2 (by 

the parameter’s definition), and the geometric definition of the vector dot product, the following equation relates the two 

sets of direction vectors. 

 
Now, through substitution of equations wi and vi into the above equation, a set of relationships between the system 

inputs and outputs is obtained. Upon performing this substitution and simplifying the result, the following equation is 

produced. 

 

 
Where 
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It follows that the input angle required to achieve a desired end-effector positional output can be found with the 

following equation. 

 
Above equations  represent  the solution to the inverse kinematics problem for the 3-RRR manipulator because they 

provide the required active joint states, θi, necessary to achieve a desired orientation of the end-effector. That is, once 

end-effector rotations θ,ϕ and ψ are established, the associated angular states of the active revolute joints can be 

identified. 

Jacobian analysis 

A number of generally accepted performance indices for parallel manipulators are often published as a method for 

comparing various robotic manipulators. The values of these indices usually have physical significance and applications 

for design optimization. The three indices considered in this paper, which are manipulability, dexterity, and rotational 

sensitivity, all derive from the Jacobian matrix of a manipulator. Thus, the 3-RRR device’s Jacobian development is 

discussed in this section, before the performance indices are examined in the next section. To start, a vector q is assigned 

to represent active joint variables while x is used to characterize the end-effector’s position. The kinematic constraints 

associated with the device’s limbs can be expressed as follows. 

 
Where  f  is an n-dimensional implicit function of q and x, and n is the active joint count within the mechanism. Now, 

time-differentiating equation yields the following relationship between input joint rates and end-effector velocity. 

 
As shown above, two components of the Jacobian are produced: Jx and Jq. The combination of these components 

yields the complete Jacobian matrix. 

 
It is important to note that the Jacobian associated with a parallel manipulator, as in above equation  is derived as the 

inverse of a serial manipulator’s Jacobian. 

when equation  is written once for each of i =1, 2, and 3 three scalar equations are produced. These can be arranged in 

matrix form as follows. 

 
Combining both of the above equations yields a complete form of the 3-RRR manipulator’s Jacobian matrix. 

 

 
 

Recall that vectors ui, wi, and vi which can be computed from above equations respectively. 

Hip exoskeleton design based on performance indices 

With the 3-RRR manipulator’s Jacobian matrix derived, it is now possible to evaluate several of the device’s 

performance indices. In doing so, two methods for attaching the device to the human body are considered, as shown in 

Figure . Furthermore, only flexion-extension and abduction-adduction motions are considered; the final major DOF of 

the hip joint (i.e. internal/external rotation) is assumed to be constant and oriented such that the knee’s axis of rotation is 

perpendicular to the sagittal plane of the body. As can be deduced from Figure , the device’s ψ angle corresponds to 

flexion/extension motions for Attachment Method 1, while ϕ is associated with those motions in Attachment Method 2; 

for both cases, θ corresponds to abduction/ adduction motions. Additionally, a workspace range of [–0.2 0.2] radians for 

both flexion-extension and abduction-adduction motions was considered for all local performance studies. Finally, the 

results below are only applicable when the parameter values (i.e. for α1, α2,β,√,η1, η2 η3) are selected as per the discussion 

in Kinematic architecture section. 
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Manipulability 

Forces experienced by joints within parallel manipulators tend to become large when such a device nears singular 

configurations.Thus, the ability to quantify a manipulator’s nearness to singular configurations is useful. Manipulability 

is a common performance index used to accomplish this quantification. It is defined as the absolute value of the 

Jacobian’s determinant, as given in equation . Alternatively, this index can be interpreted as the Jacobian matrix’s 

minimum-magnitude eigen value. 

 

 
Fig.(1) Considered 3-RRR attachment methods as a hip exoskeleton. (a) Interfacing scheme 1; (b) interfacing scheme 2 

 

In mechanical terms, manipulability represents a manipulator’s ability to successfully create a desired velocity at its 

end-effector. Alternatively, this index can be understood as the ellipsoid volume resulting when a unit sphere is mapped 

from the manipulator’s n-dimensional joint space into Cartesian space through its Jacobian matrix and a constant 

proportionality factor; recall that n represents the active joint count for the manipulator. It follows that a manipulator 

achieves greater manipulability performance if its ellipsoid has a greater uniformity, or isotropy, characteristic. Such an 

isotropy index for manipulability can be quantified as follows. 

 
where min and max are the minimum and maximum singular values of the Jacobian matrix, respectively. The μiso 

value in above equation  is limited to the range [0, 1], where 0 indicates inability to transmit velocity to the end-effector 

(i.e. a singular configuration) and 1 indicates ability to transmit velocity to the end-effector uniformly in all directions. 

The surface plot shows the 3-RRR device’s manipulability deviation and statistical distribution within the considered 

workspace for the two attachment methods depicted in Figure 1. According to the surface plots below shown in fig 2, the 

manipulability of the 3-RRR is greatest when operating near its ‘home’ configuration and least near the boundaries of the 

considered workspace for both attachment methods. Comparatively, Attachment Method 1 achieves a greater average 

value for manipulability than Attachment Method 2. Furthermore, Method 1 achieves less variance in performance 

within the workspace considered. Therefore, Method 1 is superior to Method 2 in terms of manipulability. 



 
International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) 

Volume 5, Issue 01, January-2019, e-ISSN: 2455-2585, Impact Factor: 5.22 (SJIF-2017) 

IJTIMES-2019@All rights reserved   108 

 
. Fig(2) 3-RRR manipulability for (a) Attachment Method 1 and (b) Attachment Method 2. 

 

Dexterity (condition number) 

Because a manipulator’s control scheme generally relies on its joint position co-ordinates, any errors between the 

expected and actual joint coordinates cause errors in the end-effector’s position and orientation. This end-effector error 

can be determined through multiplication of the errors in the joint coordinates by a scaling factor: the condition number, 

k.A manipulator’s condition number is obtained from the Jacobian matrix as follows. 

 
where J is the Jacobian matrix. Here, J  denotes the Jacobian’s Euclidean norm. 

 
Gosselin proposes that the condition number’s inverse be used to quantify a manipulator’s kinematic accuracy,this 

criterion is called the local dexterity index, denoted by . 

 
Again, allowable values for n are constrained between 0 and 1; zero indicates a singularity, and  greater values 

correspond to increasingly accurate motion generation at the end-effector. Surface plot in fig(3) depicts and statistical 

box plots depicts both body-attachment arrangements of the 3-RRR manipulator across its considered workspace. 

Similarly to manipulability, these plots suggest that the mechanism’s dexterity is greatest when configured in close 

proximity to its ‘home’ orientation and that it decreases as the device moves towards the boundaries of its considered 

workspace. Additionally, greater average dexterity and less dexterity variation are achieved when the 3-RRR robot is 

interfaced with the human body according to Attachment Method 1 as opposed to Method 2, which makes the former 

preferable. 
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. Fig(3) 3-RRR dexterity for (a) Attachment Method 1 and (b) Attachment Method 2 

 

Rotational sensitivity 

 The rotational sensitivity index of a manipulator indicates how reactive its end-effector is to changes in active joint 

states. More specifically, it is the maximum-magnitude rotation of the end-effector under a unit-norm actuator 

displacement; it is given by either the 2–norm of the Jacobian matrix as follows. 

 
Plots shows the sensitivity results for the 3-RRR manipulator when subject to the body-interfacing schemes of Figure 

1 and constrained to the [–0.2 0.2] radian workspace range in both flexion-extension and abduction-adduction motions. 

Again, Attachment Method 1 demonstrates preferable performance to that of Method 2 because the former possesses the 

smaller-magnitude average and variance range in sensitivity index value. Furthermore, sensitivity performance is optimal 

for both arrangements near the device’s ‘home’ orientation and degrades as the workspace limits are approached. 

 
Fig(4) 3-RRR rotational sensitivity for (a) Attachment Method 1 and (b) Attachment Method 2. 

 

Conclusion and future work 

 This paper proposes the use of the well-established 3-RRR manipulator as a robotic component within a hip 

exoskeleton system. Before investigating the mechanism’s performance for two different body-attachment methods the 

the device’s inverse kinematics and Jacobian matrix development procedures were revisited. The performance study 

results indicate that the body-interfacing arrangement that orients the manipulator’s x-y plane parallel to the body’s 

sagittal plane is superior in terms of average value and variability for manipulability, dexterity, and rotational sensitivity 

indices. As can be expected, the manipulator’s performance is optimal when configured at its initial ‘home’ orientation 

and degrades as the end-effector moves away from this state. 

 


