

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)

> Impact Factor: 5.22 (SJIF-2017), e-ISSN: 2455-2585 Volume 5, Issue 03, March-2019

AN EXTENSION OF ANCIENT INDIAN METHOD OF CALCULATING CUBE ROOT

BINOD KUMAR SINGH & K. B. SINGH^{*}

Department of Mathematics, B. R. A. Bihar University, Muzaffarpur, Bihar *Department of Physics, Samastipur College, Samastipur

ABSTRACT

In this paper firstly we have tried our best to make attempts to extend Bhāskarācāya's Method of finding Cube root of a perfect cubic number to 5th root of any integer and then applied to compute nth root of any positive integer.

KEYWORDS: Ancient Mathematics, Vedic Mathematics, Cube root, Number Theory, Hindu Mathematics.

1. INTRODUCTION

An attempt has been made to give a chronological description of methods for obtaining the real root of an integer given by the Ancient Hindu Mathematician. Bhāskara II, in his book Lilāvati gave the Method to obtain the cube root of a perfect cubic number.

It is obvious that ancient Indian mathematician knew the cube root technique Bhāskara's method is indeed slightly different from his predecessors.

2. **DEFINITION**

A Number is said to be a perfect number if it is expressible in the form of x^n where x and n both are positive integers and n > 1.

Now we first consider the following table which will make the calculations at various steps a little easier if one remembers this table.

					Accor	ding T	o The	eir Un	it Plac	ces					
Numb	Unit	Unit places in different powers													
er	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	8	6	2	4	8	6	2	4	8	6	2	4	8
3	3	9	7	1	3	9	7	1	3	9	7	1	3	9	7
4	4	6	4	6	4	6	4	6	4	6	4	6	4	6	4
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
7	7	9	3	1	7	3	1	7	9	3	1	7	9	3	3
8	8	4	2	6	8	4	2	6	8	4	2	6	8	4	2
9	9	1	9	1	9	1	9	1	9	1	9	1	9	1	9

End of Roots of Perfect Numbers

Note that:

1. For 5th, 9th, 13th, 17th etc. powers of 1, 2, 3, 4, 5, 6, 7, 8 & 9, end respectively in 1, 2, 3, 4, 5, 6, 7, 8 & 9.

2. For 6th, 10th, 14th, 18th etc. powers of 1, 2, 3, 4, 5, 6, 7, 8 & 9 end respectively in 1, 4, 9, 6, 5, 6, 9, 4 & 1.

IJTIMES-2019@All rights reserved

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Volume 5, Issue 03, March-2019, e-ISSN: 2455-2585, Impact Factor: 5.22 (SJIF-2017)

- 3. For 7th, 11th, 15th, 19th etc. powers of 1, 2, 3, 4, 5, 6, 7, 8 & 9 end respectively in 1, 8, 7, 4, 5, 6, 3, 2 & 9.
- 4. For 8th, 12th, 16th, 20th etc. powers of 1, 2, 3, 4, 5, 6, 7, 8 & 9 end respectively in 1, 6, 1, 6, 5, 6, 1, 6 & 1

Applying these operations over perfect number, we can find out the nth root immediately.

3. $1^{st} 5^{th}$ ROOT METHOD

Note that: Fifth power of numbers from 1 to 9 are respectively 1, 32, 243, 1024, 3125, 7776, 16807, 32768 and 59049.

- Step I: Put a vertical line on the unit place and four dots on four digits behind it (i.e. tens, hundreds, thousands, ten thousands). Repeat the process till all the digits are over. Then we are determined that total number of vertical lines gives total numbers of digits in its fifth root.
- Step II : From the last vertical line at extreme left subtract the greatest possible 5th power of any number(say a).
- Step III : Form II pada by taking down the reminder and the next digit, divide it by $5a^4$ to get quotient b (where $b \le 9$)
- Step IV : Form the III pada by taking down the reminder and the next digit. Subtract $10a^3b^2$ from III pada, $10a^2b^3$ from IV pada, $5ab^4$ from V pada and b^5 from VI pada respectively. If subtraction of $10a^3b^2$ is not possible reduce to lowest number until subtraction becomes possible and the next subtraction are done with this value of b.
- Step V: If more digits are left, divide VII pada by $5(10a + b)^4$ to get quotient c (where $c \le 9$). Subtract $10(10a+b)^3c^2$ from VIII pada, $10(10a+b)^2c^3$ from IX pada, $5(10a+b)c^4$ from X pada and c^5 from XI pada respectively. If subtraction of $10(10a+b)^3c^2$ is not possible, c is reduced and adjusted in the same way as b.
- Step VI: If more digits are left divide the next pada XII by $5(100a+10b+c)^4$ to get quotient d (where $d \le 9$) and adjusted in the same way as b & c. Subtract $10(100a+10b+c)^3d^2$, $5(100a + 10b + c)^2d^3$, $5(100a+10b+c)d^4$ & d^5 from next padas are respectively. If more digits are left the process may be extended in the same way.

4. **RESULTS**

- (i) For the number having two vertical lines, the root is 10a+b, (where b is the unit place for perfect number only).
- (ii) For three vertical lines, the root is 100a+10b+c, (where c is the unit place for perfect number only).
- (iii) For four vertical lines, the root is 1000a+100b+10c+d, (where d is the unit place for perfect number only) and so on.

Example 1: Find the 5th root of 14348907

Let the given number is perfect number.

a^5	$= 2^5$	1 1	
$5a^4$	$= 5.2^4$	14348907	
$10a^3b^2$	$= 10:2^3.7^2$	32	2 = a
	= 3920	[:] = 80) 1114 (7=b	Here unit place is 7.
$10a^2b^3$	$= 10;2^2.7^3$	560	So that quotient is 7
	= 13720	5548	and the root is 27.
$5ab^4$	$= 5.2.7^4$	3920	
-	= 24010	16289	
b ⁵	$= 7^{5}$	13720	
	= 16807	25690	
		24010	
		16807	
		16807	
		Х	

Hence fifth root of 14348907 is 27.

Example 2: Find the 5th root of 4747561509943.

a ⁵	=	3 ⁵	1 1 1	
$5a^4$	=	5.3^4	4747561509943	
$10a^{3}b^{2}$	=	$10:3^{3}.4^{2}$	243	3 = a
104 0	=	4320	= 405) 2317 (4=b	
$10a^2b^3$	=	$10:3^2.4^3$	1620	
	=	5760	6975	
$5ab^4$	=	$5.3.4^4$	4320	
	=	3840	26556	
b^5	=	4 ⁵	5760	
	=	1024	207961	
$5(10a+b)^{3}$	=	$5(34)^4$	3340	
$10(10a+b)^{3}c^{2}$	=	$10(34)^3.3^2$	2041215	
	=	3537360	1024	
$10(10a+b)^{2}c^{3}$	=	$10(34)^2.3^3$	= 6681680)204 01910 (3 =c	
· · · ·	=	312120	20045040	
$5(10a+b).c^4 = 5(3)$	34)	³ .3 ⁴	3568709	
	=	13770	3537360	
c^5	=	3^{5}	313499	
-		-	312120	
			13794	
			13770	
			243	
			243	
			Х	

Hence the 5th root of 4747561509943 is 343

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) Volume 5, Issue 03, March-2019, e-ISSN: 2455-2585, Impact Factor: 5.22 (SJIF-2017)

Example 3: Find the 5th root of 14693280768

a ⁵	$= 1^{5}$	1 1 1
$5a^4$	$= 5.1^4$	146932880768
$10a^3b^2$	$= 10:1^3.(08)^3$	<u>1</u> 1 = a
	= 640	= 5)46 (08=b Here 4 is not divided by 5
$10a^2b^3$	$= 10(a)^2 (08)^3$	40 So that put 0 as quotient
4	= 5120	and divides 46. Hence the root
5ab ⁴	$= 5.1.(08)^4$	<u>640</u> is 108. Within two steps we
-	= 20480	5328 can find the root, further
b ⁵	$= (08)^{5}$	<u>5120</u> calculations are only for
	= 32762	20807 verifcation.
		20480
		32768
		32768
		X

Hence the 5th root of 14693280768 is 108.

REFERENCES:

- 1. Datta and Singh, "History of Hindu Mathematics-I", P. 19. However, Datta and Singh fix the time 3000 B.C.
- 2. Sarasvatī, Swamī Satya Prakash, "Founders of Sciences in Ancient India", Published by Vijay Kumar, Govindram Hasanand, 4408 Nai Sarak, Delhi-110006.
- 3. Mazumadar, R.C., suggest that the time of Mahbhārata is 1400 B.C. vide History and Culture of Indian People, Vol. 1, P. 300.
- 4. Agrawal, V.S., i.c., P. 48.
- 5. Opinion of Langden, quoted by V.S. Agrawal, i.c., PP. 47-48 and also opinion of Maxmuller in Sampurnānand's "Āryon Kā Ādidesa", P. 16.