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Abstract: 
 Peristaltic is an inherent property of many syncytial smooth muscle tubes which 

occurs due to stimulation. A major industrial application of this principle is in the design 

of roller pumps to eliminate contamination of pumping fluids with the pumping 

machinery. The lubrication – theory model by Jaffrin & Shapiro et al(1971) is applicable 

globally for pumping characteristics at a small Reynolds number. Srivastava & Agarwal 

(1980) modelled the blood as an electrically conducting fluid and investigated the 

oscillatory flow. Depending on the perturbation solution of Mishra & Ramachandra 

Rao(2003), we have studied in this paper the Peristaltic transport of a viscous conducting 

fluid in an asymmetric channel as shown in different physical models. Finally we 

conclude that the time averaged flow rate increases with the decreasing phase shift. 
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Introduction: 
 

Peristaltic pumping is the process of fluid transport arising from the progression 

of contraction waves along a distensible tube. Peristalsis induces propulsive and mixing 

movements and pumps the fluid against the pressure rise. Physiologically, peristalsis is an 

inherent property of many syncytial smooth muscle tubes which occurs due to 

stimulation. Stimulation at any point can cause a contractile ring to appear in the circular 

muscle of the gut, and this ring then spreads along the tube. In this way, peristalsis occurs 

in the gastrointestinal tract, the bile ducts, and other glandular ducts throughout the body, 

the uterus, and many other smooth muscle tubes of the body. A major industrial 

application of this principle is in the design of roller pumps, which are used in pumping 

fluids without being contaminated due to the contact with the pumping machinery. 

The accuracy of the fluid mechanics of peristaltic transport has been confirmed 

experimentally by Latham (1966) and Weinberg, Eckstein and Shapiro (1971). The 

earliest models of peristaltic pumping are based on the assumption of trains of periodic 

sinusoidal waves in infinitely long two-dimensional channels or ax symmetric tubes 

(Shapiro 1967; Fung &Yih 1968; Yih & Fung 1969; Shapiro et al. 1969)
[3]

. These models 

which were applied primarily to characterize the basic fluid mechanics of pumping 

process, fall into two classes: (1) the model developed by Fung & Yih which is restricted 

to small peristaltic wave amplitudes but has no restrictions on Reynolds number; and (2) 

the lubrication-theory model introduced by Shapiro et al. (1969) in which effects of fluid 

inertial and wall curvature are neglected but no restrictions are placed on wave amplitude. 

A complete review of peristaltic transport is given by Jaffrin and Shapiro (1971)
[4]

. The 
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lubrication-theory model is applicable globally in the limit of totally occluding peristaltic 

waves and is found to be a reasonably accurate approximation of global pumping 

characteristics at a small Reynolds number and wall curvature, Jaffrin (1973); Tatabatake 

& Ayukawa (1982).  A numerical investigation of peristaltic waves in circular tubes was 

discussed by Xiao and Damodaran (2002). 

 The magneto hydrodynamic (MHD) flow of a fluid in a channel with peristalsis is 

of interest in connection with certain flow problems of the movement of conductive 

physiological fluids, (e.g., the blood flow in arteries). The effect of magnetic field on 

blood flow was studied by Sud et al. (1977) and it is observed that the effect of suitable 

magnetic field accelerates the speed of blood. 
[9]

Srivastava and Agrawal (1980) and 

Prasad and Ramacharyulu (1981) by considering the blood as an electrically conducting 

fluid and constitutes a suspension of red cell in plasma. Also, 
[1]

Agrawal and Anwaruddin 

(1984) studied the effect of magnetic field on the peristaltic flow of blood using long 

wavelength approximation method and observed for the flow of blood in arteries with 

arterial stenosis or arteriosclerosis, that the influence of magnetic field may be utilized as 

blood pump in carrying out cardiac operations. Li et al. (1994) have used an impulsive 

magnetic field in the combined therapy of patients with stone fragments in the upper 

urinary tract. It was found that the impulsive Magnetic field (IMF) activates the 

impulsive activity of the ureteral smooth muscles in 100% of cases. Nonlinear peristaltic 

transport of MHD flow through a porous medium was studied by Mekheimer and Al-

Arabi (2003).  Mekheimer (2004) studied the peristaltic transport of blood under effect of 

a magnetic field in non uniform channels. Some of the physiological systems in human 

body cannot be modeled by a symmetrical channel, especially the sagittal cross section of 

the uterus. 
[2]

Eytan and Elad (1999) and Eytan et al. (2001) have studied the intra uterine 

fluid in the sagittal cross section of the uterus by a asymmetric channel under lubrication 

approach. Recently, Mishra and Ramachandra Rao (2003) developed the flow in an 

asymmetric channel generated by peristaltic waves propagating on the walls. 
[5]

Mishra 

and Ramachandra Rao (2003) obtained a perturbation solution for the problem of 

peristaltic flow of a viscous Newtonian fluid in an asymmetric channel. In view of these, 

we modeled the peristaltic transport of a conducting fluid in an asymmetric channel. 

  The aim of the present study in this chapter is to study the MHD peristaltic flow 

in a two-dimensional asymmetric channel under the assumptions of long wavelength and 

low Reynolds number in a wave frame of reference. The effects of phase shift and 

Hartmann number on the pumping characteristics are discussed in detail. 

Mathematical formulation and Solution:  
We consider the peristaltic transport of a viscous conducting fluid in an 

asymmetric channel with flexible walls with asymmetry being generated by the 

propagation of waves on the channel walls travelling with same speed c  but with 

different amplitudes and phases. We assume that a uniform magnetic field strength 0B  is 

applied in the transverse direction to the direction of the flow (i. e., along the direction of 

the y-axis) and the induced magnetic field is assumed to be negligible. Fig.1. shows the 

physical model of the asymmetric channel. 

The channel walls are given by 

1 1 1

2
( , ) cos ( )Y H X t a b X ct




            (upper wall)     (1a) 
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2 2 2

2
( , ) cos ( )Y H X t a b X ct






 
      

 
    (lower wall)     (1b) 

where b 1 , b 2  are amplitudes of the waves,  is the wavelength, 1a  + 2a  is the width of 

the channel,  is the phase difference (0) and t is the time.  
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Fig.1. Physical Model 

 

We introduce a wave frame of reference  ,  x y moving with velocity c  in which 

the motion becomes independent of time when the channel length is an integral multiple 

of the wavelength and the pressure difference at the ends of the channel is a constant 

(Shapiro et al., (1969)). The transformation from the fixed frame of reference  ,  X Y  to 

the wave frame of reference  ,  x y  is given by 

   -   ,    ,      - ,       x X c t y Y u U c v V     and  ( )  ( ,  ),p x P X t  

where  ,  u v and  ,  U V  are the velocity components,  p   and  P   are pressures in the 

wave and fixed frames of reference, respectively. 

The equations governing the flow in wave frame of reference are given by  

0
u v

x y

 
 

 
,          (2) 

22 2

0

2 2

1
,eBu u p u u

u v u
x y x x y



  

     
      

     
     (3) 

  

2a  

2b  

1( ,  )H x t  

1a  

1b  

  

c  Y 

2( ,  )H x t  

X 
O 

0B  
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2 2

2 2

1
.

v v p v v
u v

x y y x y



 

     
     

     
      (4) 

where e  is the electrical conductivity of the fluid,   is the density and   is the 

viscosity of the fluid. 

Introducing the following non-dimensional variables  

1 2

1 1

2

1 1 2 1 2
1 2 1 2

1 1 1 1

, , , , ,

, , , , .

x y u v a a
x y u v d

a c c a

pa H H b b
p h h

c a a a a


  

 
 

     

    
        

in the governing equations (1 - 4), and dropping the bars, we get  

 1 1 2 21 cos2 ,  cos 2h x h d x               (5) 

0
u v

x y

 
 

 
,          (6) 

2 2
2 2

2 2
Re ,

u u p u u
u v M u

x y x x y
 

      
       

       
    (7) 

2 2
3 2 2

2 2
Re .

v v p v v
u v

x y y x y
  

      
      

       
     (8) 

where 1Re
a c


  is the Reynolds number and 0 1

eM B a



  is the Hartmann number. 

Using long wavelength (i.e., 1  ) and negligible inertia (i.e., Re 0 ) 

approximations, we have 0
p

y





, 

2
2

2

u
M u P

y


 


.                          (9) 

where 
dp

P
dx

 . 

The corresponding non-dimensional boundary conditions are given as  

-1u   at 1 2 and y h y h                  (10) 

Solving equation (9) using the boundary conditions (10), we get  
2

1 2cosh sinh /u c My c My P M           (11) 

where 
  

 

2

2 1

1

1 2 2 1

1 / sinh sinh

cosh sinh cosh sinh

P M Mh Mh
c

Mh Mh Mh Mh

  



 and    

           
  

 

2

1 2

2

1 2 2 1

1 / cosh cosh

cosh sinh cosh sinh

P M Mh Mh
c

Mh Mh Mh Mh

  



. 

The volume flow rate in the wave frame is given as 
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   

 

1

2

1 2
1 2 1 2

1 22

  sinh sinh cosh cosh

                                                                   .

h

h
q udy

c c
Mh Mh Mh Mh

M M

P
h h

M



   

 



                (12) 

From (12), we have 

 

 

3 2

1 2

2 1 2 1

dp qM D D M
P

dx D h h MD


 

 
        (13) 

where   

1 1 2 2 1cosh sinh cosh sinhD Mh Mh Mh Mh      and 

   
2 2

2 1 2 1 2cosh cosh sinh sinhD Mh Mh Mh Mh     

The instantaneous flux at any axial station is given by 
1

2
1 2( , ) ( 1)

h

h
Q x t u dy q h h              (14) 

The average volume flow rate over one wave period (T= / c ) of the peristaltic 

wave is defined as  

1 2
0 0

1 1
( ) 1 .

T T

Q Qdt q h h dt q d
T T

             (15) 

The pressure rise over one wave length of the peristaltic wave is given by 

 
 

 
 

1 3 2
1

1 2

0
2 1 2 10

3 21
1 2

1 2

2 1 2 10

1
                    

dp qM D D M
p dx dx

dx D h h MD

Q d M D D M
QI I

D h h MD


  

 

  
  

 

 



.    (16) 

where 
 

1 3

1
1

2 1 2 10

M D
I dx

D h h MD


   and 
 

1 3 2

1 2
2

2 1 2 10

(1 )d M D D M
I dx

D h h MD

  


  . 

The equation (16) can be rewritten as 

2

1

p I
Q

I

 
 .          (17) 

Discussion of the results:  
 Using equation (11) we have plotted the variation of axial velocity u  with 

y at 0.25x  with 1 20.7, 1.2, 2, 0.5
dp

d
dx

      , 0   and for different values 

of Hartmann number M as shown in Fig. 2(i).  The velocity profiles are parabolas.  The 

maximum velocity occurs at the centre of the channel and increases as M increases.  This 

is due to peristalsis. Fig. 2(ii) shows the variation of axial velocity u  with y  at 
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0.25x  with 1 20.7, 1.2, 2, 0
dp

d
dx

     , 0   and for different values of M. In 

this case also the maximum velocity increases with the increment in M.  

 The variation of axial velocity u  with y  at 0.25x   with 1 = 0.7,  2 = 1.2,          

(i) 5.0
dx

dp
 , 2d  , 0    and for different values of M as depicted in                        

Fig.2 (iii) As M increases the maximum velocity increases.  Further for small values of M 

(  0.5 ) , the flow takes place in the reverse direction. Fig.3 shows the variation of axial 

velocity u  with y   for different values of Hartmann number M with 

1 20.7, 1.2, 2,d    , 
4


   and for  (i) 5.0

dx

dp
, (ii) 0

dx

dp
, (iii) 5.0

dx

dp
 .  

 The maximum velocity increases for adverse pressure gradient, zero pressure 

gradient and favourable pressure gradient. For small values of M (0.5), the flow takes 

place in the reverse direction when 0
dx

dp
. The variation of maximum velocity u  with 

y  at 0.25x  for different values of M  with 1 20.7, 1.2, 2,d     
2


   and for 

(i) 5.0
dx

dp
  (ii) 0

dx

dp
  (iii) 5.0

dx

dp
 as shown in Fig.4.   

 As M  increases the maximum velocity increases.  For small values of M , the 

flow takes place in the reverse direction when 0
dx

dp
.   

 Further as the phase shift increases the velocity decreases. The variation of 

pressure rise  p  with time averaged volume flow rate Q   for different phase shifts 

with  1 20.7, 1.2, 2d     and for (i) 0.5M  and  (ii) 1M   as shown in Fig.5.   

 It is observed that in the pumping region and free pumping region as phase shift 

   increases the time averaged flow rate as well as pressure rise both decrease.  An 

interesting observation here is that in co-pumping region Q  increases with phase shift   

for an appropriately chosen ( 0)p  .  Further as M increases the time averaged volume 

flow rate as well as pressure rise both increase.  

 When the amplitudes of the peristaltic waves are same, we observe the same 

phenomena as in the case of that for different amplitudes of the peristaltic waves as 

shown in Fig.6. 0p  , we observed that the time averaged flow rate Q  increases with 

the decreasing phase shift  .  But below certain value of p  (  – 0.5) the opposite 

behaviour is observed.  For a given Q (approximately <1.8) p increases with the 

decreasing phase shift  . 
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Fig.2(i). The variation of velocity u  with y for different values of M  

with 1 20.7, 1.2   , 2,d   0.25x  and 0   for 0.5
dp

dx
  . 
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Fig.2(ii). The variation of velocity u  with y for different values of M  

with 1 20.7, 1.2   , 2,d   0.25x  and 0   for 0
dp

dx
 . 
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Fig.2(iii). The variation of velocity u  with y for different values of M  

with 1 20.7, 1.2   , 2,d   0.25x  and 0   for 0.5
dp

dx
 . 
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Fig.3(i). The variation of velocity u  with y  for different values of M  

with 1 20.7, 1.2   , 2,d   0.25x  and / 4   for 0.5
dp

dx
   
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Fig.3(ii). The variation of velocity u  with y for different values of M  

with 1 20.7, 1.2   , 2,d   0.25x  and / 4   for 0
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dx
 . 
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Fig.3(iii). The variation of velocity u  with y for different values of M  

with 1 20.7, 1.2   , 2,d   0.25x  and / 4   for 0.5
dp

dx
  
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Fig.4(i). The variation of velocity u  with y for different values of M  

with 1 20.7, 1.2   , 2,d   0.25x  and / 2   for 0.5
dp

dx
  . 
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Fig.4(ii). The variation of velocity u  with y for different values of M  

with 1 20.7, 1.2   , 2,d   x = 0.25 and / 2   for 0
dp

dx
 . 
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Fig.4(iii). The variation of velocity u  with y for different values of M  

with 1 20.7, 1.2   , 2,d   0.25x  and / 2   for 0.5
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  
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Fig.5(i). The variation of pressure rise p with time-averaged volume flow rate Q  for 

different phase shifts with 1 22, 0.7, 1.2d      and 0.5M  . 
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Fig.5(ii). The variation of pressure rise p with time-averaged volume flow rate Q  for 

different phase shifts with 1 22, 0.7, 1.2d      and M = 1. 
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Fig.6(i). The variation of pressure rise p with time-averaged volume flow rate Q  for 

different phase shifts with 1 22, 0.7, 0.7d      and M = 0.5. 
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Fig.6(ii). The variation of pressure rise p with time-averaged volume flow rate Q  for 

different phase shifts with 1 22, 0.7, 0.7d      and M = 1. 

 

Conclusion: 
 The study of the peristaltic transport of blood under effect of magnetic field in 

non- uniform channels, particularly in an “asymmetric channel” is of much importance 

and will be helpful for future researchers in this field. Some physical models are shown in 

graph form are also of much help. 
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