

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)

> Impact Factor: 5.22 (SJIF-2017), e-ISSN: 2455-2585 Volume 4, Issue 11, November-2018

LOGARITHMIC METHOD OF GROUNDWATER QUALITY INDEX IN PALAR BASIN AT CHITTOOR DISTRICT, ANDHRA PRADESH

Anil.A¹, K. Chandrasekhar Reddy², R.Bhavani³

¹Research scholar, department of civil Engineering, JNTUA, Ananthapuramu. ²Professor, Department of Civil Engineering, Siddhartha Institute of Engg&Tech, Puttur. ³Associate Professor, Department of Civil Engineering, JNTUA, Ananthapuramu

Abstract—Logarithmic method of Water Quality Index (WQI) was applied in Palar basin, chittoor district, Andhra Pradesh for calculating WQI and assesses the groundwater quality, total 50 groundwater samples were collected. Using eleven water quality parameters (pH, Total hardness, chlorides, Dissolved solids, calcium, Magnesium, sulphate, Nitrate, Flouride, Alkalinity, and sodium).Groundwater Quality Index (GWQI) a congregate parameter representing the quality and suitability of groundwater for drinking purpose is computed using logarithmic method. The WQI value 63.83 is maximum and the value 14.28 is minimum in the study area. The computed WQI shows that 94% of water sample fall in the 'good' to 'excellent' water category. On the other hand, 16% of water samples fall in the 'fair' to 'poor' category indicating that the water is not suitable for direct consumption and require treatment. After treatment, the water can be used for drinking purpose.

Keywords—: Physico-chemical analysis, Logarithmic method Water Quality Index (WQI), Palar basin.

I. INTRODUCTION

Ground water occurs almost everywhere beneath the earth surface not in single widespread aquifer but in thousands of local aquifer systems and compartments that have similar characters. Knowledge of the occurrence, replenishment and recovery of groundwater has special significance in arid and semiarid regions due to discrepancy in monsoon rainfall, insufficient surface waters and over drafting of groundwater resources. Groundwater, of late, has become an important source of water to reckon with to meet different needs of an individual and also of society. Ascertaining the quality is crucial before its use for various purpose such as drinking, agricultural, recreational and industrial use. Till recently, ground water assessment has been based on laboratory investigation, but the advent of satellite Technology and Geographical Information system (GIS) can be a powerful tool for developing solutions for water resources problems assessing water quality[1-3].

Water Quality Index (WQI) is an important tool to find the groundwater quality and its suitability for drinking purpose. WQI is defined as a technique of rating that provides the composite influence of individual water quality parameters on the overall quality of water for human consumption [4-6]. WQI is a mathematical equation used to transform large number of water quality data into a single number. The standards for drinking purposes as recommended by WHO [7] has been considered for the calculation of WQI. Water quality index is one of the most effective tools to communicate information on the quality of any water body [8-10]. It is simple and easy to understanding of water quality issues by integrating complex data and generating a score that describes water quality status.

A. Study Area:

Chittoor District is one of the chronically drought affected rayalaseema district of Andhra Pradesh. Administratively the district is divided into 3 revenue divisions which are further subdivided in to 66 mandals. The important drainage basins are Bahuda, Pincha, swarnamuki, palar , ponnai and araniyar. Palar basin lies between north Latitude 13052' to 13038' and East Longitude 79054' to 790 45' with a total drainage 703 km2(Figure 1). It cover five mandals that is Chandragiri, somala, Puthalapattu.Irala and Pakala. This region is influenced by semi arid climate. The mean temperature lies between to 30 °C to 42 °C . The Normal annual rainfall over the study area is about 860 mm. The district is underlain by rocks of Archaean, proterozoic, jurassiic- caraceous and Tertiary-Quaternary ages. The oldest rock in the area belongs to Migmatite Complex, representing by migmatised quartzo-feldspar gneiss and are exposed in the northeastern part of the district. Older metamorphic comprise amphibolites, hornblende-talc-mica-schist, fuchsite quartzite, calcium sillicate rock, marble and banded ferruginous quartzite. The older matamorphics occur as enclaves with peninsular Gneissic Complex (PGC). The study area majorly covers granite gneiss rock type and dolerite dykes and quartz vanes are present. There are mainly two types of soils present in the basin they are Red loamy soils and Stream courses are covered by black clay soils.

B. Map View:

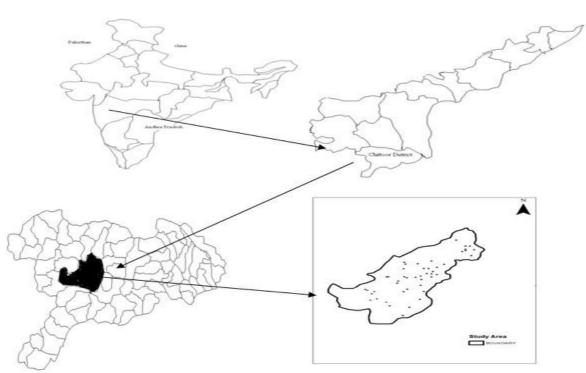


Figure 1. Location map of the area

II MATERIALS AND METHODS

Chemical Analysis: Water samples were collected in July 2017 from 50 boreholes capturing the deep aquifer of Palar basin. The water samples were collected in clean polythene bottles. At the time of sampling, the bottles were thoroughly three times rinsed with the groundwater to be sampled. In the case of bore wells and hand pumps, the water samples were collected after pumping for 10 min. This was done in order to remove to groundwater stored in the well. Each of the groundwater sample was analyzed for 11parameters such as pH, TDS, Total hardness, Magnesium, Sulphate, Nitrate, Fluoride, Alkalinity, Sodium, Chlorides, Calcium. Using standard procedure recommended by APHA [6].pH is determined by using pH meter. Total solids are determined by using evaporation method. Total hardness, calcium, magnesium, alkalinity and chlorides are determined by titration method. Nitrate is determined by Brusin Sulphonic acid method and sulphates are determined by Turbedometeric method. Flouride is determined by SPANDS method. Sodium is determined by Flame photometer method All the water quality parameters was expressed in mg/l, except pH . Each parameter was compared to the desirable standard limit of that parameter stipulated for drinking water as prescribed by the WHO for drinking and public health purposes. Parameters as well as applied math measures, like minimum, maximum, mean and standard deviation, are presented.

III LOGARITEMIC METHOD OF WATER QUALITY INDEX

Logarithmic method of Water Quality Index (WQI) is a very useful and efficient method for assessing the quality of water. WQI is a very useful tool for communicating the information on overall quality of water. Logarithmic method, developed by Tiwari and Mishra(1985) from the concept of WQI introduced by Brown et al.,(1972) and supported by Simha and Saxena (2006) and several researchers Landwehr and Deineinger (1976), Subba Rao et al..(1997), Swarnalatha and Nageswara Rao (2010), Shanthilal et al.,(2011) is used in the present studyto compute WQI. To determine the suitability of the groundwater for drinking purposes, WQI is computed adopting the following steps

$$GWQI = Antilog\{\sum[Wi \times log(qi)]\}$$

(1)

(2)

Where,

Wi is the weightage factor computed using Eq. (2), qi is the quality rating for the i^{th} water quality parameter Wi = K / Pi

Where, Pi is the permissible limit of ith parameter

 $K = 1/\sum (1/Pi)$

(3)

(4)

Quality rating for the ith water quality parameter (qi) is calculated using Eq.(4)

 $qi = 100 \times [(Ci Vi) / (Pi Vi)]$

 $\dot{Ci} = Observed$ concentration of i^{th} parameter

Vi = Ideal value of the ith parameter

Table 1: Method adopted for estimating groundwater quality parameters

S.NO	Parameters	Method
1	pH	Digital pH Meter
2	Total Hardness (TH)	EDTA titration method
3	Sulphate (SO ₄)	Spectrophotometric method
4	Fluorides (F)	Spectrophotometric method
5	Chlorides (Cl)	Titrimetry
6	Total Dissolved Solids (TDS)	Elico Meter
7	Calcium (Ca)	Titrimetry
8	Magnesium (Mg)	ICP Mass Spectrometry
9	Sodium(Na)	Titrimetry
10	Nitrate (NO ₃)	Spectrophotometric method
11	Alkalinity (Al)	Titrimetry

Table 2: Water Quality parameters Values for collected Groundwater samples at various locations

		TH	SO42-	Fluoride	CL-	TDS	Ca ²⁺	Mg ²⁺	Na ²⁺	NO ₃ -	Alkalinity	
Sample	T(°C)	pН							mg	g/l		
1	33.5	6.54	380	17.7	0.2	166	550	231	125	100	1.2	221
2	30	7.32	160	15.2	0.1	157	890	65	72	258.5	0.1	65
3	33	6.76	220	9.65	0.3	59	950	105	92	90	0.1	95
4	33	6.60	450	20.75	0.2	279	970	265	232	91.8	0.25	256
5	31	6.84	270	14.45	0.3	124	450	158	89	104.9	1.1	148
6	30	6.65	240	12.5	0.2	54	650	91	125	85.6	0	98
7	32	6.75	280	16.75	0.3	89	550	138	119	68	0	128
8	30	6.36	280	10.3	0.2	32	550	165	92	50.6	0.1	155
9	31	6.76	390	20.3	0.2	121	850	145	222	108.2	0.1	138
10	31	6.71	250	13.65	0.3	69	450	78	149	97.2	0.45	68
11	31	6.52	340	18.55	0.3	179	850	265	52	96.7	0.4	255
12	34	7.02	440	13.8	0.2	149	850	198	219	110.1	0	188
13	30	7.48	420	24	0.2	114	850	231	165	106.9	0	227
14	30	6.61	460	25.5	0.2	214	950	231	205	111.3	0.75	221
15	32	6.89	460	25.05	0.2	224	1050	298	139	106.1	0.8	258
16	29	6.87	470	25.2	0.1	214	950	231	215	137.8	1	221
17	31	6.85	460	19.65	0.2	164	950	248	189	53.4	0.25	238
18	33	6.55	260	12.25	0.2	49	550	165	72	39	0.6	155
19	31	6.77	260	11.95	0.2	54	550	148	89	45	0.6	138
20	31	6.28	280	10.95	0.2	124	550	165	92	42	0.45	155
21	32	6.43	210	12.05	0.3	29	350	98	89	41.4	1.2	88
22	32	6.84	450	22.95	0.2	109	950	198	229	105.7	0	188
23	31	6.44	460	29.35	0.2	114	950	215	222	83.5	0	205
24	32	6.95	440	23.85	0.2	119	1050	331	85	108.7	0.45	335

K is the Proportionality constant, computing using Eq. (3),

				-								
25	31	6.60	320	19.45	0.3	119	650	165	132	71.3	0	155
26	31	7.25	500	16.9	0.1	214	950	198	279	86.6	1.4	188
27	32	7.16	260	24.3	0.4	314	1050	315	72	191.1	1.6	305
28	30	6.39	450	33.2	0.1	184	950	181	245	105.3	0.9	171
29	30	7.23	260	12.7	0.2	41	450	148	89	39.4	1.1	138
30	30	7.02	380	15.85	0.2	132	850	198	159	97	0.25	188
31	32	6.75	280	7.2	0.2	49	750	131	125	47.6	0.6	121
32	30	6.78	440	19.7	0.2	114	950	181	235	83.6	0	171
33	32	6.83	460	20.15	0.1	116	950	198	239	110.9	1	188
34	31	7.18	250	10.85	0.1	47	550	148	79	42.6	0.5	138
35	31	6.85	380	13.7	0.2	121	750	181	175	69.6	1.2	171
36	31	6.68	440	25.35	0.2	134	850	198	219	94	1.1	188
37	32	6.85	280	10.45	0.1	119	550	131	125	125.9	0.7	121
38	30	7.20	280	6.75	0.1	39	550	131	125	50.9	1.6	121
39	30	6.79	260	6.3	0.1	39	550	265	12	58.1	1.7	255
40	30	6.78	280	2.7	0.1	44	550	98	159	48.2	0	88
41	30	7.10	420	11.1	0.1	131	750	165	232	69.2	0	155
42	30	7.20	340	36.75	0.1	199	850	231	85	113.3	0.7	221
43	32	7.26	490	36	0.2	204	1020	265	252	98.4	0	255
44	31	7.18	280	7	0.2	41	450	98	159	49.9	1.4	88
45	31	7.08	380	17.35	0.2	87	650	131	225	73.8	0.45	121
46	31	7.11	360	17.8	0.2	89	750	181	155	82.7	0.1	171
47	31	7.26	470	16.35	0.3	161	950	231	215	58.1	1.6	221
48	30	7.44	610	26.5	0.3	399	1300	165	422	166.9	1.4	155
49	30	7.42	560	26.45	0.1	399	1150	265	272	176.5	1.6	255
50	30	6.84	500	16.7	0.1	224	1050	231	245	120.5	1.6	221
MIN	29	6.28	160	2.7	0.1	29	350	65	12	39	0	65
MAX	34	7.48	610	36.75	0.4	399	1300	331	422	258.5	1.7	335
MEAN	31.07	6.88	365.96	17.76	0.20	138.35	783.27	186.33	164.31	93.68	0.66	177.19
SD	1.09	0.30	103.36	7.65	0.07	86.36	221.93	62.30	77.05	42.46	0.57	61.26

It may at this stage, be noted that based on GWQI values, the Groundwater quality is rated as excellent, good, moderately polluted, very poor, and unfit for drinking as listed table below

Table 3: Water quality based on GWQI values						
GWQI Range	Type of Water					
<25	Excellent water					
26-50	Good water					
57-75	Moderately polluted water					
76-100	Very Poor water					
>100	Unfit for Drinking					

IV RESULTS AND DISCUSSIONS

Groundwater samples collected from 50 wells were tested for eleven quality parameters as listed in the table 2. A glance at these parameters indicates the following:

pH:

The negative logarithm of hydrogen ion concentration of a solution is the pH . In the study area . The values of pH in the groundwater samples collected varied from 6.28 to 7.48 with an average value of 6.88. This shows that the quality of groundwater of the study area is within the enticing limit.

IJTIMES-2018@All rights reserved

Total Hardness (TH):

Hardness in water is caused primarily by the presence of carbonates and bicarbonates of calcium and magnesium, sulphates, chlorides and nitrates. Total hardness could be a live of calcium (Ca2+) and magnesium (Mg2+) content in water and is expressed as equivalent of CaCo3. Water with a hardness of but less than 75 mg/l is considered as soft. Hardness of 75-150 mg/l isn't objectionable for many functions.. Minimum total hardness of 160 mg/l and maximum value of 610 mg/l.

		alues for different samples
Sample	WQI	Status
1	34.59	Good Water
2	61.94	Moderately polluted Water
3	44.36	Good Water
4	46.56	Good Water
5	44.54	Good Water
6	14.45	Excellent Water
7	44.15	Good Water
8	53.08	Moderately polluted Water
9	45.49	Good Water
10	34.47	Good Water
11	63.83	Moderately polluted Water
12	46.24	Excellent Water
13	25.53	Excellent Water
14	25.35	Excellent Water
15	25.06	Excellent Water
16	14.28	Excellent Water
17	26.24	Good Water
18	25.70	Excellent Water
19	26.18	Good Water
20	25.28	Excellent Water
21	37.15	Good Water
22	26.36	Good Water
23	26.00	Good Water
24	26.30	Good Water
25	26.29	Good Water
26	14.39	Excellent Water
27	47.97	Good Water
28	14.42	Excellent Water
29	26.18	Good Water
30	26.60	Good Water
31	26.67	Good Water
32	25.35	Excellent Water
33	15.13	Excellent Water
34	15.13	Excellent Water
35	24.26	Excellent Water
36	26.42	Good Water
37	14.42	Excellent Water
38	14.42	Excellent Water
39	14.38	Excellent Water
40	14.48	Excellent Water
41 42	14.32	Excellent Water
	14.52	Excellent Water
43	26.00	Good Water
44	25.88	Excellent Water
45	26.42	Good Water
46	26.18	Good Water
47	14.96	Excellent Water
48	15.00	Excellent Water
49	14.86	Excellent Water
50	15.08	Excellent Water

 Table 4. Water Quality Index Values for different samples

Sulphate (So₄):

Sulphates can be found in almost all natural water. The origin of most sulphate compounds is the oxidation of sulphate ores, the presence of shales or the industrial wastes. In the present study the concentrations is varying from 2.7 to 36.75

Fluoride (F):

It is originated in all natural type of waters at different concentrations. The concentration of fluoride in water is limited by fluorite solubility, so that in the presence of 40 mg/L calcium it should be limited to 3.1 mg/L. It is the absence of calcium in solution which allows higher concentrations to be reliable. Surplus fluoride intake causes different types of fluorosis, primarily dental and skeletal fluorosis. Bureau of Indian Standards (BIS) has prescribed 1 mg/l as the acceptable limit and 1.5 mg/l as the permissible limit for fluoride.

Chloride (Cl):

It is known fact that the sea water intrusion shows abnormal concentration of Chloride. In potable water, the salt taste is made by chloride concentrations. At concentrations above 250mg/l, water acquires salty taste which is objectionable to human consumption. Bureau of Indian standards prescribes 250mg/l as desirable limit and 1000mg/l permissible limit as in the absence of alternate source. In the study area, Chloride concentration ranges between 29 to 399 mg/l. *Total Dissolved Solids (TDS):*

Concentration of dissolved solids in groundwater decides its applicability for drinking, irrigation or industrial purposes. The concentration of dissolved matter in water is given by the load of the fabric on evaporation of water to dryness up to a temperature of 1800C. The values are expressed in mg/l. The major constituents of TDS include Bicarbonates (HCO) Sulphates (SO2+) and Chlorides (Cl-) of Calcium, Magnesium, Sodium and Silica. Groundwater consists of more than ⁴1000 mg/l of total dissolved solids which is generally referred as brackish water. In this study area, the TDS amount ranges from 350 mg/l to 1300 mg/l with an average of 781 mg/l.

Calcium (Ca²⁺):

Calcium can be observed in most of the geological material aquifers, Calcium occurs in water mainly due to the presence of limestone, gypsum, dolomite and gypsiferrous minerals. Calcium is a major factor of most igneous, metamorphic and sedimentary rocks. Permissible limit of calcium is 75 mg/l. Calcium concentration ranges from 65 mg/l to 331 mg/l.

Magnesium (Mg $^{2+}$):

Magnesium is existent in water because it is washed from rocks and subsequently ends up in water. Permissible limit of magnesium is 30 mg/l.Large dose of Magnesium causes muscle slackening, nerve problems, depressions and personality changes vomiting and diarrhea. Water quality analysis of the samples collected indicates that the magnesium concentration ranges from 12 mg/l to 422 mg/l.

Sodium (Na⁺):

Major source of sodium content in the ground water is due to presence of salts. Desirable limit of sodium content in the ground water is 200 mg/l. Sodium in the ground water basin ranges between 39 mg/l to 258 mg/l.

Nitrates:

Nitrate is the most important nutrients in an ecosystem. Generally water bodies impure by organic matter exhibit higher values of nitrate. In the present study water samples from the stations (s1 to s50) showed low concentrations of nitrate (0 to 1.7 mg/l) well below permissible levels as per the standards.

Bicarbonates (HCO₃):

Carbon dioxide, bicarbonate and carbonates in dissolved state cause alkalinity to water. Alkalinity of the study area is found to vary between 65 to 335 mg/l.

V CONCLUSIONS

GWQI values computed using logarithmic method are used to categorize the quality of groundwater from the study area Palar basin in Chittoor district. The Logarithmic method of Water Quality Index is a very useful and an efficient tool to summarize and to report on the monitoring data to the decision makers in order to be able to perceive the standing of the groundwater quality; and to have the opportunity for better use in future as well. The overall view of the logarithmic WQI (Table 4) of the present study zone shows a higher WQI. But, only three locations had a satisfactory result with a WQI below 75. This study demonstrates that the use of GIS and WQI methods could provide useful information for water quality assessment.

IJTIMES-2018@All rights reserved

VI REFERENCES:

- Vasanthavigar, M., K. Srinivasamoorthy, K. Vijayaragavan, R. Ganthi, S. Chidambaram, P.Anandhan, R. Manivannan and S. Vasudevan, Application of water quality index For groundwater quality assessment: Thirumanimuttar sub-Basin, Tamilnadu, India. Environ Monitoring Assess. DOI 10.1007/s10661-009-1302-1, 2010.
- 2. Sargaonkar, A. and V. Deshpande, Development of an overall index of pollution For surface water based on general classification scheme in Indian context, Environmental Monitoring and assessment, 2003 (89):43-67.
- Ravikumar, P., R.K. Somashekar and M. Angami, Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purpose in the Markandeya River Basin, Belgaum District, Karnataka State, India. Environmental Monitoring Assessment ,doi:10.1007/s10661-010-1399-2, 2010.
- 4. WHO, Water quality monitoring: A practical guide to the design and implementation of freshwater quality studies and monitoring programmes. E and FN Spon, London, UK, 1996.
- 5. WHO, Guide lines for drinking water quality training pack, WHO, Geneva, Switzerland, 2004.
- 6. APHA, Standard methods for the examination of water and waste water (APHA), 1995.
- Kumar, M., K. Kumari, A.L. Ramanathan and R. Sexena, A Comparative Evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, Indian Environmental Geology 2007, [5]:553-574.
- 8. Mouna Ketata-Rokbani, Moncef Guddari and Rachida Bouhlila, Use of Geographical Information System and Water Quality Index and Assess Ground water quality in EI Khairat Deep Aquifer (Enfidha, Tunisian Sahel), Iranica journal of Energyand Environment, 2011, 2(2):133-144.
- 9. Srinivasamoorthy, K, M. Chidambaram, M.V. Prasanna, M. Vasanthavigar, A. John Peter and P. Anuradhan, Identification of major sources controlling Groundwater Chemistry from a hard rock terrain- A case study from mettur taluk, salem district, Tamil Nadu, India, J. Earthsystem science., 2008, 117(1):49-58.
- 10.Remesan et al., "Remote sensing and GIS Application for Groundwater Quality and Risk mapping", the 49 3rd International Conference on Water Resources and Arid Environments, 2008.