

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)

Impact Factor: 5.22 (SJIF-2017), e-ISSN: 2455-2585 Volume 5, Issue 04, April-2019

COMPARATIVE STUDY OF SHEAR WALL AND PORTAL BRACING BUILDING

¹Vishakha G. Shirke, ²Varsha Yadav

¹P.G. Student, ¹Structural Engineering, Parul institute of Technology ²Assistant Professor, Parul institute of Engineering and Technology ¹Faculty of Engineering and Technology, Parul University, Vadodara, India.

Abstract : A large proportion of world's population lives under higher seismic risk region so there is a need of construction technologies which resist higher seismic forces and Shear wall is such type of technology. Shear wall are used as an efficient way to resist lateral load in RC building. Shear wall stabilize the whole structure against the effect of strong horizontal seismic loading and impart stiffness to the building. The main goal of this research is to find out of Displacement of the building. The present study is an attempt to understand the effectiveness of story displacement on different storey height of building. Four different height of building G+5 to G+20 every five incremental story has been taken. The response spectrum analysis of building of portal bracing in place of shear wall was carried out using STAAD PRO software. At the end, building response parameter Story Displacement was compared.

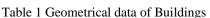
Index Terms –Shear Wall, Portal Bracing, Building aspect ratio, Different Storey Height, Response spectrum analysis, Story Displacement.

I. INTRODUCTION

Shear wall is a structural member in a reinforced concrete framed structure to resist lateral forces such as wind forces. Shear walls are generally used in high-rise buildings subject to lateral wind and seismic forces. In reinforced concrete framed structures the effects of wind forces increase in significance as the structure increases in height. Codes of practice impose limits on horizontal movement or sway.

In this paper we will study about seismic behavior of different Building with Displacement, in this paper the measuring parameters for different height of building story drift is taken, the models are prepared and analyzed in Matrix based analytic software. To performed seismic analysis on model response spectrum method used.

To Study the different height of Building with Displacement, we used the shear wall building and portal bracing in place of shear wall in building and total 8 models into this parametric study using into the 4 with shear wall building model and 4 with metal bracing in place of shear wall building model with same aspect ratio.


II. PRESENT STUDY

To effectiveness of displacement building is checked from G+5 to G+20 storey with every incremental five storey. As the tendency (purpose) of base shear is to reduce the drift of the building, so the storey drift of Shear Wall and Portal Bracing building for varying storey height is compared. Building data are same as mentioned in Building data except column sizes. Beam and Column sizes are decided by analyzing and designing the model in STAAD PRO by using response spectrum analysis.

Building Data

Grade of concrete	= M 25
Beam size (m×m)	$= 0.4 \times 0.5$
Thickness of slab	= 0.15m
Thickness of shear wall	= 0.25 m
Storey Height	= 3.1 m each
Live load	= 2 kn/m2
Dead load on slab	= 1 kn/m2
External glass panel loa	d = 7 kn/m
Internal wall load	= 6.4 kn/m
Parapet wall load	= 2.3 kn/m
Shear wall thickness	= 230 mm

Table I Geometrical data of Buildings				
No. of Storey	Height of Building	Length of Building	Width of Building	H_B/B_B
	$(H_B)(m)$	$(L_B)(m)$	$(\mathbf{B}_{\mathbf{B}})(\mathbf{m})$	Ratio
G+5	20.5	20.5	32	0.64
G+10	36	36	32	1.13
G+15	51.5	51.5	32	1.61
G+20	67	67	32	2.09
G+25	73.2	73.2	32	2.29
G+30	82.5	82.5	32	2.58

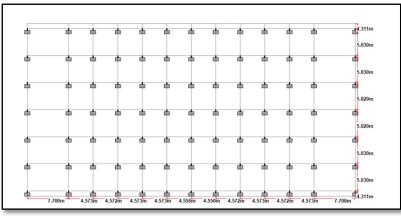
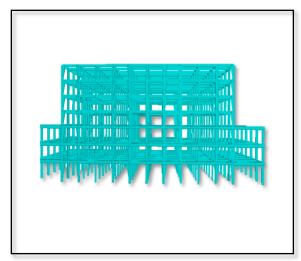
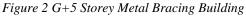
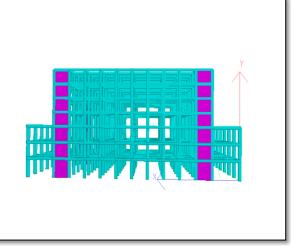
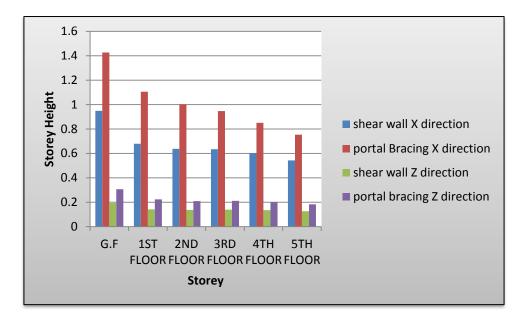




Figure 1 Plan of G+5 Storey Building




Figure 3 G+5 Storey Shear Wall Building

III. RESULT

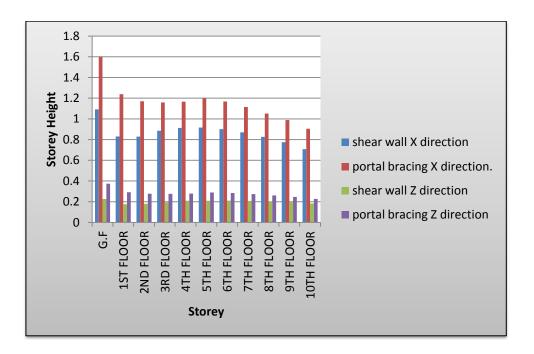

After the analysis of all models all are compared to below parameters

Table 2 Storey Difft of O+5 building				
Storey	Storey Drift			
	Shear wall	Portal	Shear wall	Portal
	X direction	bracing X	Z direction	Bracing Z
		direction		direction
G.F	0.9489	1.4262	0.1928	0.3069
1 st Floor	0.6785	1.1046	0.1419	0.2238
2 nd Floor	0.6372	1.0022	0.1370	0.2094
3 rd Floor	0.6346	0.9471	0.1389	0.2115
4 th Floor	0.6024	0.8500	0.1348	0.1999
5 th Floor	0.5423	0.7536	0.1261	0.1827

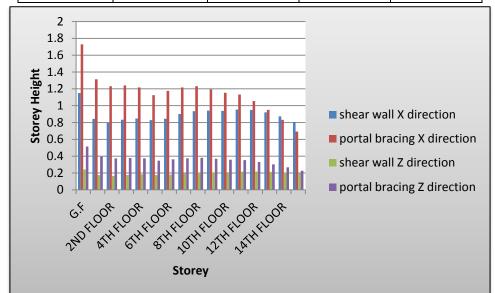
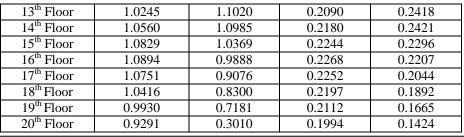

Table 2 Storey Drift of G+5 building

Table 3 Storey Drift of G+10 building				
Storey	Storey Drift			
	Shear wall X	Portal bracing	Shear wall Z	Portal
	direction	X direction	direction	Bracing Z
				direction
G.F	1.0921	1.5986	0.2256	0.3742
1 st Floor	0.8302	1.2380	0.1756	0.2913
2 nd Floor	0.8287	1.1698	0.1792	0.2778
3 rd Floor	0.8856	1.1591	0.1942	0.2768
4 th Floor	0.9127	1.1669	0.2092	0.2795
5 th Floor	0.9171	1.1982	0.2095	0.2895
6 th Floor	0.9016	1.1679	0.2102	0.2843
7 th Floor	0.8701	1.1149	0.2078	0.2736
8 th Floor	0.8258	1.0514	0.2022	0.2605
9 th Floor	0.7745	0.9892	0.1946	0.2464
10 th Floor	0.7045	0.9045	0.1841	0.2278



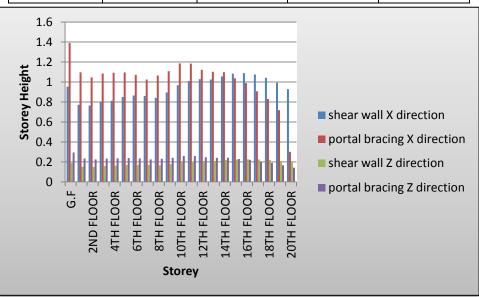

Storey	Table 4 Storey Drift of G+15 building rey Storey Drift			
,	Shear wall X direction	Portal bracing X direction	Shear wall Z direction	Portal Bracing Z direction
G.F	1.1505	1.7285	0.2423	0.5150
1 st Floor	0.8427	1.3142	0.1753	0.3939
2 nd Floor	0.7981	1.2309	0.1665	0.3730
3 rd Floor	0.8327	1.2402	0.1753	0.3780
4 th Floor	0.8481	1.2172	0.1846	0.3733
5 th Floor	0.8279	1.1258	0.1760	0.3467
6 th Floor	0.8447	1.1765	0.1804	0.3620
7 th Floor	0.9022	1.2164	0.1945	0.3752
8 th Floor	0.9344	1.2311	0.2033	0.3807
9 th Floor	0.9413	1.1950	0.2069	0.3697
10 th Floor	0.9378	1.1538	0.2094	0.3578
11 th Floor	0.9546	1.1331	0.2155	0.3527
12 th Floor	0.9487	1.0554	0.2168	0.3302
13 th Floor	0.9202	0.9501	0.2132	0.3030
14 th Floor	0.8735	0.8320	0.2057	0.2676
15 th Floor	0.8057	0.6925	0.1936	0.2269

Table 5 Storey Drift of G+20 building

Storey	Storey Drift			
	Shear wall X	Portal bracing	Shear wall Z	Portal
	direction	X direction	direction	Bracing Z
				direction
G.F	0.9527	1.3908	0.1889	0.2949
1 st Floor	0.7726	1.0966	0.1524	0.2344
2 nd Floor	0.7643	1.0460	0.1508	0.2246
3 rd Floor	0.8034	1.0848	0.1592	0.2335
4 th Floor	0.8126	1.0923	0.1634	0.236
5 th Floor	0.8499	1.0954	0.1693	0.2384
6 th Floor	0.8652	1.0708	0.1715	0.2346
7 th Floor	0.8611	1.0250	0.1705	0.2258
8 th Floor	0.8413	1.0642	0.1666	0.2324
9 th Floor	0.8955	1.1071	0.1789	0.2417
10 th Floor	0.9674	1.1866	0.1943	0.2601
11 th Floor	1.0100	1.1837	0.2040	0.2599
12 th Floor	1.0281	1.1220	0.2090	0.2465

IV. CONCLUSION

- 1) In G+5 and G+10 storey building storey drift is increased at higher rate 20 to 40%.
- 2) The increment of drift in G+15 storey building is about 4 to 30%.
- 3) In G+20 Storey building storey drift decreased at 10 to 70%.
- 4) By replacing shear wall by portal bracing there is increase in storey drift and however that is brought in permissible limit by increasing depth of beam.
- 5) Thus Portal bracing can be used as an effective replacement to shear wall.

V. REFERENCES

- [1] R.Bongilwar, V.R.Harne and A.Chopade "Significance of Shear Wall In Multi-Storey Structure With Seismic Analysis", IOP Conf. Series: Materials Science and Engineering. (2018), 1-12.
- [2] A.Thapa, S.Sarkar "Comparative Study of Multi-Storied Rcc Building with and Without Shear Wall", Journal of Civil Engineering (IJCE). (2017), 11-20.
- [3] V.R.Harne "Comparative Study of Strength of RC Shear Wall at Different Location on Multi-Storied Residential Building", International Journal of Civil Engineering Research. (2014), 391-400.
- [4] Abhijeet Baikerikar, Kanchan Kanagali "Seismic Analysis Of Reinforced Concrete Frame With Steel Bracings", Research Gate. (2014), 1236-1239.
- [5] P.P. Phadnis, D.K. Kulkarni, A.B. Kulkarni And V.V. Karjinni "Performance Of Composite Steel-Concrete Shear Walls With Encased Vertical Steel Sections", ELSEIER. (2011),127-132.