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Abstract— Audio event detection and audio event classification are emerging field. The detection and classification of 

audio and sounds are prominently accomplished using the machine learning models like Support Vector Machines, 

K- Nearest Neighbour, Artificial Neural Networks, etc. These models give considerable accuracy. But deep learning 

models have surpassed the machine learning models in detecting and classifying the audio events, sources of sound 

and audio scenes. Convolutional Neural Network(CNN) is the deep learning model that has been used extensively in 

the field of audio. It has already made astonishing achievements in the field of image classification and other 

computer vision applications. This paper introduces the usage of CNN in the field of audio  classification, describes 

the CNN model, layers of CNN, feature extraction in CNN. Then, the use of CNN in the various areas related to 

sound are described. 
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I. INTRODUCTION 
 

           Audio detection and classification is the study of detecting the audio scenes and events and further classifying 

them. Audio scenes are the environment surrounding the sounds such as home, restaurant, office, meeting rooms, etc. 

Audio events are audio signals at the particular point of time like birds singing, the car passing by, , etc. Audio scene 

classification assigns semantic labels to temporal regions of sound recordings. Audio event classification systems aim to 

classify sound events in the audio recognizing start and stop times of events.
 

         At present, audio recognition technology has a great commercial market and several benefits. Speech Processing 

finds a number of applications in speech recognition [1][2], speech synthesis [3]. In the field of music, various musical 

instruments [4], genres of music [5] are classified using machine learning models. In the field of medicines and hospitals, 

the normal and pathological data are discriminated using audio [6]. The invisible damage in the panels of aircraft which is 

difficult to detect by staff inspectors can be detected using audio processing[7]. Low flying aircraft can be detected 

through sound processing [8]. Various events such as sounds of closing or opening doors, dropping or breaking objects, 

gunshot, dog barking and screams can help in identification of various abnormal activities [9]. Wang et al. [10] presented 

a robust environmental sound recognition system for home automation. In machine learning models, features are 

extracted manually and fed to machine learning classifier. But CNN is the black box, features are extracted and 

classification is performed internally. CNN has been used massively for sound related applications. 

 

II. CONVOLUTIONAL NEURAL NETWORK 

 

CNN is an artificial neural network and a deep learning model. It is a variation of Multilayer Perceptron (MLP) 

Networks and requires very less preprocessing as compared to MLP. Instead of handcrafted features as in the case of 

machine learning algorithms, CNN has the ability to learn features on its own.  It was developed  primarily for tasks 

of object recognition. E.g. handwritten digit recognition [11]. CNN uses a mathematical operation called convolution 

instead of matrix multiplication in at least one of its layers. The CNN architectures are usually built with four main 

types of layers: Convolutional layer, Detector Layer, Pooling layer and Fully Connected layer (Fig. 1). 

 

Fig. 1: Layers of Convolutional Neural Network 
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A. Convolutional Layer 

The convolutional layer has a convolution operation between two signals or functions. One dimensional convolution can 

be depicted as below:  

                                                                                                    (1) 
 

Where f is the input and g is the filter. t is the time index and a is the value of time shift. Feature Map, also called 

activation map is the output of the convolution. This layer consists of a set of learnable filters which convolve across the 

input and produces a feature map. Different filters lead to different feature maps. It implies that filters are activated when 

certain features are detected. In the case of sounds, features can be a certain frequency component or pitch. 

B. Detector Layer 

A non-linear activation function called ReLU is used which makes the linear output from the previous layer to be non-

linear. The ReLU activation function is preferred over tanh and sigmoid activation functions because ReLU removes 

vanishing gradient problem [12]. ReLU makes all the negative values as zero. 

f (x) = max(0, x) 

C. Pooling Layer 

 The spatial size of the output from the previous layer is reduced by the pooling layer. The value of the output is replaced 

by the aggregation operation on its neighborhood values as the relative location of the features is more important than the 

actual location. The aggregation or pooling operations used are max-pooling, min-pooling, average and L2 norm pooling, 

out of which max-pooling is the most common one. Pooling layer reduces the chances of overfitting and the number of 

parameters to be learned.
 

D. Fully connected Layer 

Fully connected layer takes as input the output of the previous layer( convolutional or detector or pooling layer). The 

output of this layer is the vector whose length is equal to the number of classes into which the data is to be classified. 

Different activation functions can be used in this layer. The most commonly used activation function is softmax function 

which outputs the vector whose each value is the probability of the input value belonging to the class. 

 

III. CNN IN SOUND RELATED APPLICATIONS 

 

CNN has been widely employed for various sound related applications. In CNN, hierarchical feature learning takes 

place.
 

In the field of biodiversity, CNN has achieved remarkable performance through audio sensing. It is used to classify 

various bird species in large scale dataset and has achieved a considerable accuracy [13] [14]. Bat calls are detected and 

classified using CNN which are ultrasonic in nature [15]. 

In the field of medicines and hospitals, CNN is used to classify the heart sounds as pathological, non- pathological or 

uncertain [16]. In this approach, human-driven features, Mel Frequency Cepstral Coefficients(MFCCs) are given as input 

to CNN. CNN is employed for recognizing S1 and S2 heart sounds when duration and interval information between S1 

and S2 are not available [17]. The MFCCs are clustered using the K-means algorithm and further classified using CNN. 

CNN is employed for feature extraction only and classification is performed using a machine learning model to classify 

heart sounds and it performed well [18]. 

Audio scenes such as beach, car/bus, cafe, park,  etc. are classified using CNN [19]. Vehicles are classified using 

sounds. CNN is used for extracting features from the sounds of vehicles and further classification is performed using a 

machine learning model i.e. Support Vector Machine(SVM)[20]. CNN classifies short audio clips of environmental 

sounds and achieves the accuracy more than state of art methods[21][22] [23]. Large scale audio classification in 

videos is performed using deep Convolutional Neural Network [24] [25] CNN is used for recognizing and classifying 

various sound events using spatial features[26]. In the case of the weakly labeled dataset, CNN achieves good 

performance in classifying various sound events [26].  CNN  is applied for Polyphonic sound event detection[27] and 

other speech event and audio event recognition tasks [28] [29]. The audio can be converted to images and further CNN 

can be used for classifying the audio because CNN became immensely popular through image classification tasks 

only[30]. 

Dividing the audio recordings into frames can give good results as audio recordings are continuous signals and using 

frames, even the small events can be captured and the signals can be considered quasi-stationary. CNN works well when 

applied on framed audio signals [31]. Traditional speech recognition algorithms such as Hidden Markov Models(HMM) 

are replaced by CNN to recognize speech [32] [33] 

Deep learning models need large scale datasets and a huge amount of data to train efficiently. If the data available is less, 

then techniques of data augmentation can be employed to increase the data. CNN has given good results after data 
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augmentation in case of audio events [34] and environmental sound classification [35]. In some cases, injecting noise can 

lead to better results for backpropagation networks like CNN [36]. 

IV. CONCLUSION 

 

Convolutional Neural Network is used widely in various classification tasks such as image and sound classification. In 

this paper, the usage of CNN in sound-related applications is described. CNN is extensively used in environmental 

sounds, heart sounds, bird sounds classification, and speech, etc. Transfer learning can help in audio classification using 

CNN [37] [38] [39].
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