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ABSTRACT 

A data stream is a massive unrestrained sequence of data elements continuously generated at a rapid rate. 

Consequently, the knowledge entrenched in a data stream is likely to be changed as time goes by. However, most of 

mining algorithms or frequency estimate algorithms for a data stream do not able to extract the recent change of 

information in a data stream adaptively. This paper proposes a sliding window method of discovery of recently 

frequent itemsets over an online data stream. The size of a window defines a favored life time of the information of a 

transaction in a data stream. 
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1. INTRODUCTION 

A data stream is a massive unrestrained sequence of data elements incessantly generated at a rapid rate. The target 

application domains of a data stream are either a bulk addition of new transactions as in a data warehouse system or an 

individual addition of a incessantly generated transaction as in a network monitoring system. The previous is called as an 

offline data stream while the later is called as an online data stream [7]. 

Recently, various algorithms [4, 5, 7] are dynamically proposed to extract different types of knowledge embedded in a 

data stream. Among these, the Lossy Counting algorithm [7] is the most envoy method for finding frequent itemsets over 

a data stream. In the Lossy Counting algorithm, the set of frequent itemsets in a data stream is initiate when an error 

parameter ε as well as a minimum support is given. A set of newly generated transactions in a data stream is encumbered 

together into a fixed-sized buffer in main memory and they are batch-processed. The exact current counts of all single 

items in the data stream are maintained in main memory discretely. The local count of every item in the buffer is obtained 

first and added to its present count. An item whose updated count is less than ε × N is not considered to generate a set of 

local item sets that emerge in the new transactions, where N denotes the total number of transactions so far including the 

newly generated transactions in the buffer. This is because such an item cannot be a frequent item for the given error ε. 

The local count of every local itemset is recognized by scanning the new transactions in the buffer. 

The information about the earlier mining result up to the latest batch operation is maintained in a data structure called D 

containing a set of entries of a form (e, f, ∆) where e is an itemset, f is the count of the itemset e, and ∆ is the utmost 

possible error count of the itemset e. In order to modernize the information of the data structure D, all of its en- tries are 

looked up in sequence. For the entry (e, f, ∆) of an itemset e in D, if the itemset e is one of the local itemsets recognized 

by the new transactions in the buffer, its previous count f is incremented by its local count. Subsequently, if its estimated 

count i.e., f + ∆ is less than ε × N, it is pruned from D. On the other hand, when there is no entry in D for a local itemset 

e, a new entry (e, f, ∆) is inserted to D. Its maximum possible error ∆ is set to ε × N′ where N′ denotes the number of 

transactions that were processed up to the latest batch operation. This is because ε × N′ is the utmost possible count 

that could be missed for the itemset under the given error ε. However, it does not discriminate the recent occurrences of 

each itemset from the old ones. Therefore, an itemset can be regarded as a frequent itemset although it seldom occurs in 

recent transactions. 

Generally, knowledge entrenched in a data stream is more likely to be changed as time goes by. Identifying the recent 

change of a data stream rapidly can provide valuable information for the analysis of the data stream. In addition, 

monitoring the incessant variation of a data stream enables to find the plodding change of embedded knowledge, so that it 

can be timely utilized.  
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Several sliding window methods [5, 6] are recently projected to find the knowledge entrenched in recently generated data 

elements. A window is distinct by a fixed number of recently generated data elements which is the target of data mining. 

The SWF algorithm [6] uses a sliding window to find frequent itemsets in a stipulated number of recent transactions. The 

sliding window is poised of a sequence of partitions. Each partition maintains a number of transactions. The candidate 2-

itemsets of all transactions in the window are maintained discretely. When the window is complex, the oldest partition is 

overlooked and a new partition containing a set of newly generated transactions is appended to the window. At the same 

time, the candidate 2-itemsets of the advanced window are attuned. Subsequently, all feasible candidate itemsets are 

generated by these candidate 2-itemsets. The new set of frequent itemsets is recognized by scanning the transactions of 

the sliding window. In the SWF algorithm, to get an up-to-date mining outcome for entire transactions including newly 

generated transactions, all the transactions in the current window should be re-scanned utterly. As a result, each 

transaction in the current window should be scanned as many times as the number of partitions in the window. For a data 

stream of bits, the concept of a sliding window is utilized in [5] to approximate the count of 1’s in recently generated N 

bits. Unlike the SWF algorithm, it does not physically store the data elements of a data stream. Furthermore, the 

algorithm is extensive to trace the estimated sum of the last N positive integers in a data stream of integers.  In [8], 

customer’s up-to-moment preferences are found for e-commerce recommendation is anticipated. In this method, the past 

preferences are maintained permanently and the up-to-moment preferences are found based on a set of recently generated 

data elements. Customer’s preferences for the entire data elements counting the up-to-moment data elements are 

recognized by combining the past preferences with the up to moment preferences. 

Based on the inference mechanism of the Lossy Counting algorithm [7], this paper proposes a sliding window method for 

discovery of recently frequent itemsets in a data stream when a minimum support Smin ∈  (0, 1), an error parameter ε ∈  

(0, Smin) and the size of a sliding window w are given. A recently frequent itemset is an itemset whose sustain in the 

transactions within the current sliding window is greater than or equal to Smin. Contrary to the Lossy Counting algorithm 

that analysis the frequency of an itemset in the transactions generated so far in a data stream, the proposed method 

analyses the frequency of an itemset within the array of the current window. By restricting the target of a mining process 

as a fixed number of newly generated transactions in a data stream, the recent change of the data stream can be 

competently analyzed. Consequently, the proposed method can hold the recent change of a data stream as well as analyze 

the past variation of knowledge embedded in a data stream. 

To find recently frequent itemsets precisely over a data stream, the incidence of every itemset should be carefully 

maintained. However, it is almost unfeasible to monitor every itemset that appears in the transactions of a data stream. 

Such monitoring not only requires a large amount of main memory but also prolongs the processing time for discovery of 

frequent itemsets. However, not all of itemsets that appear in a data stream are considerable for finding recently frequent 

itemsets. An itemset whose support is much less than a predefined bare minimum support is not necessarily monitored 

since it cannot be a frequent itemset in the near future. In this paper, an itemset whose current support is greater than or 

equal to an error parameter ε is distinct as a significant itemset. Monitoring only significant itemsets can solve the above 

problems and offer an accurate mining result for a given ε. 

 

2.  FINDING RECENTLY FREQUENT ITEMSETS: Sliding Window METHOD 

 

In the sliding window method, the set of considerable itemsets in the transactions of a window are maintained in a prefix-

tree lattice structure [2]. In a prefix-tree lattice structure, an itemset is represented by a path and its manifestation count is 

maintained in the last node of the path. In this paper, a prefix-tree lattice in main memory is called as a monitoring lattice. 

Each node of a monitoring lattice contains an entry (e, f, t) where e denotes its resultant itemset, f denotes the count of the 

itemset, and t denotes the TID of the transaction which makes the itemset e be newly inserted into the monitoring lattice. 

In the Lossy Counting algorithm [7], the data structure D is maintained in a secondary storage device. However, 

accessing such a device delays the dispensation of an online data stream extremely even if it is accessed sequentially. All 

transactions in the range of the window should be discretely maintained by a structure called as a current transaction list 

CTL in order to abolish the effect of the oldest transaction that becomes out of the window range. 

Since the target of data mining in the Lossy Counting algorithm is all the transactions of a data stream, when a new 

itemset that appears in a new transaction is inserted into a data structure D, its utmost possible error count is initialized by 

the number of previous transactions that could be missed for counting the manifestation of the itemset. Furthermore, the 

maximum possible error count of an itemset maintained in the data structure D relics the same although new transactions 

are additionally generated. On the contrary, in the sliding window method, the utmost possible error of a new itemset 

should be initialized by w × ε since the target of data mining is fixed to w recent transactions.  
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In addition, the old transactions that are out of the window range should be expelled from the target of data mining. 

Consequently, the maximum possible error should be decreased as the window slide. As in the Lossy Counting algorithm 

[7], if the current support of an itemset in a monitoring lattice is less than ε in the sliding window method, it is not 

essential to monitor its count. As a result, its corresponding node is pruned from the monitoring lattice. 

 

Theorem 1   Given an error parameter ε, when wfirst denotes the TID of the initial transaction of the current window the 

utmost possible count Ck (e)  of an itemset with its entry (e, f, t) is found as follows: 

 

 

 

Proof: If t is less than or equal to wfirst, monitoring the count of the itemset e is in evolution before the first transaction 

of the current window. Therefore, there is no possible error count and its count and its utmost possible count Ck(e)  is f. 

On the contrary, if t is greater than wfirst, the total number of transactions generated before the itemset is inserted into the 

monitoring lattice is (t − wfirst). Therefore, its utmost possible error count in these transactions is (t − wfirst) × ε, so 

that its utmost possible count  Ck. (t − wfirst) × ε. 

There are two diverse phases in the proposed sliding window method. One is a window initialization phase. This phase is 

activated while the figure of transactions generated so far in a data stream is less than or equal to a predefined window 

size. Therefore, a new transaction is appended to a existing transaction list CTL and there is no extracted transaction. The 

other is a window sliding phase. This phase is activated after the CTL becomes full. A new transaction is appended to the 

CTL and the oldest transaction is extracted from the CTL. The proposed method is composed of five steps: appending a 

transaction (step 1), Count updating and insertion of new itemsets (step 2), Extracting a transaction (step 3), Pruning of 

itemsets (step 4), and frequent itemset selection (step 5). These steps except step 4 and step 5 are performed in sequence 

for a new transaction. Step 3 is performed only in the window sliding phase. Step 4 is usually performed sporadically or 

when it is needed. Step 5 is performed only when the up-to-date set of recently frequent itemsets is requested. 

When a new transaction Tk is generated, it is appended to the current transaction list CTL. Only in the window 

initialization phase, the total number of transactions in the CTL is amplified by one. In the updating the current 

transaction list CTL, a newly generated transaction should be appended ahead. Otherwise, an itemset pruned by 

extracting the oldest transaction may need to be inserted again when the new transaction is appended. 

 

Step 1: Appending a transaction, The transaction Tk is appended to the recent transaction list CTL.      

Subsequently, in the step for count updating and insertion of new itemset, those paths in the monitoring lattice that are 

induced by the items of the transaction Tk are traversed correspondingly. If an itemset is maintained in the monitoring 

lattice, the count f of its corresponding node is incremented by 1. On the other hand, for each itemset e not maintained in 

the monitoring lattice, its resultant node is inserted to the monitoring lattice. 

Step 2: Count updating and insertion of new itemsets    For an itemset e that appears in the new transaction Tk with an 

entry (e, f, t), if its consequent node is in the monitoring lattice, the count f of the corresponding node is increased by one 

i.e., e.f = e.f + 1. Moreover, for a new itemset e induced by the items of the latest transaction Tk is inserted into the 

monitoring lattice with an entry (e, f = 1, t = k).   

Due to the characteristics of the estimation mechanism of the Lossy Counting algorithm, when a new transaction is 

generated, every new itemset in the transaction should be inserted into a monitoring lattice. Therefore, the number of 

monitored itemsets may be increased significantly when a new transaction contains many new items. Therefore, not all 

the nodes of a monitoring lattice may be maintained in main memory. In this case, some of the nodes should be 

maintained in a secondary storage device as in the Lossy Counting algorithm. 

When the recent window in the window sliding phase, the oldest transaction in the recent transaction list CTL is 

extracted. Subsequently, each itemset in the monitoring lattice that is induced by the items of the extracted transaction is 

traversed. While traversing, the effect on the count of its consequent node by the extracted transaction is diminished. 
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Step 3: Extracting a transaction: only in the window sliding phase. The oldest transaction in the current transaction list 

CTL is extracted. At the same time, for an itemset e that appears in the oldest transaction in the CTL, if its corresponding 

node with an entry (e, f, t) is in the monitoring lattice, the count f of the corresponding node is restructured as follows: 

e.f = e.f – 1   (if t ≤ wfirst),   e.f = e.f   (otherwise) 

If its maximum possible count C max (e) becomes less than w × ε, it is an insignificant itemset, so that it is pruned 

from the monitoring lattice. This because its maximum possible support C max (e)/| D w is less than an error parameter ε 

if its utmost possible count Ck (e)  is less than w × ε, where |D |k  denotes the total number of transactions in the 

current window.                                                                                     

 On the other hand, in order to diminish the number of itemsets that are should be maintained in the monitored, 

insignificant itemsets can be pruned from the monitoring lattice sporadically or when it is needed. That is, among the 

itemsets maintained in the monitoring lattice, all inconsequential itemsets are pruned by traversing all the paths of the 

monitoring lattice. 

 Step 4: Pruning of itemsets    For an itemset e with an entry (e, f, t) in the monitoring lattice, if its utmost possible 

support C max(e)/| D w | is less than an error parameter ε, it can be regarded as an inconsequential itemset and it is pruned 

from the monitoring lattice. That is, if its utmost possible count Ck(e)  is less than a pruning threshold, it is pruned from 

the monitoring lattice. The pruning threshold in the window initialization phase is |Dw|k × ε and that in the window 

sliding phase is w × ε since |Dw|k = w.        

The frequent itemset assortment step is performed only when the mining result of the current window is requested. All the 

currently frequent itemsets in the monitoring lattice are established by traversing all the paths of the monitoring lattice as 

in predictable mining methods [2] based on a prefix-tree lattice structure. 

Step 5: Frequent itemset selection   For an itemset e with an entry (e, f, t) in the monitoring lattice, if its utmost possible 

support C max is greater than or equal to (e)/| D w | Smin, it is a frequent itemset. 

If the size of a window is less than or equal to 1/ε, the support of an itemset that appears at least once in the transactions 

of the current window is greater than or equal to  the utmost possible error ε. Therefore, no itemset is pruned. 

Consequently, the number of itemsets in a monitoring lattice is monotonically amplified in this case. Therefore, the size 

of a window should be greater than 1/ε in order to distinguish a set of considerable itemsets from the total set of itemsets 

formed by the transactions in the window. 

 

3. EXPERIMENTAL RESULTS 

       

In this section, two data sets in Fig. 1 are used to estimate the performance of the proposed method. Following the 

conventions set forth in [1], the names of the data sets are T5.I4.D1000K-I and T5.I4.D1000K-II where the three numbers 

of each data set indicate the average transaction size (T), the average maximal potentially frequent itemset size (I) and the 

total number of transactions (D) correspondingly. In all experiments, the transactions of each data set are looked up in 

sequence to replicate the environment of an online data stream. All experiments are performed on a 2.0 GHz Pentium PC 

machine with 512MB main memory running on Linux 7.3 and all programs are implemented in C.  

 

     

Figs. 2 and 3 show the memory usage of the sliding window method for the data set T5.I4.D1000K-I. A least support 

Smin and the size of a window w are set to 0.001 and 20000 respectively. A pruning operation is performed in every 1000 

transactions. The sequence of generated transactions is alienated into 5 intervals each of which consists of 200000 

transactions. The memory usage is represented by the utmost number of itemsets in a monitoring lattice for each interval. 

Fig. 2 shows the memory usage of the window initialization phase. In this phase, the memory usage of the proposed 

method is monotonically increased until every 1/εth transaction is processed.  
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However, it is rap- idly dropped when a subsequent pruning operation in step 4 is performed. This is because a newly 

inserted itemset is pruned when it does not appear in any of the subsequent 1/ε transactions. Fig. 3 shows the memory 

usage of the window sliding phase.  The memory usage of this phase remains almost the same although new transactions 

are incessantly processed. This is because only those itemsets whose current supports are superior than ε are maintained 

in the monitoring lattice. 

To measure the relative accuracy of the proposed method, an average support errorASE offered in [3] is used. Fig. 4 

shows the average support error of the mining result of the proposed method with esteem to that of the Apriori algorithm 

performed on the transactions within the current window in each interval of the experiment in Fig. 3 by unstable an error 

parameter ε. Generally, the more itemsets are maintained in a monitor- ing lattice, the more precise the mining result is. 

Since the number of itemsets maintained in a monitoring lattice is inversely proportional to the value of ε as shown in 

Fig. 3, the average support error is augmented as the value of ε is increased. 

 

 

 

 Fig. 5 shows the flexibility of the sliding window method for the recent change of information in a data stream. In this 

experiment, the data set T5.I4.D1000K-II is used. The values of Smin and ε are set to 0.001 and 0.1 × Smin respectively. 

A pruning operation is performed in every 10000 transactions. In order to exemplify how rapidly the sliding window 

method can adapt the amend of information in a data stream, a coverage rate CR presented in [3] is used. As the size of a 

window becomes smaller, the sliding window method adapts more hastily the transition of recent information between 

the two subparts of the data set. By varying the size w, its adaptability for the recent change of a data stream can be 

restricted. 

 

 

                 Fig. 5. Variations of the coverage rates 
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4. CONCLUSION 

 

Considering the permanence of a data stream, the old information of a data stream may be no longer useful or probably 

incorrect at present. In order to support various needs of data stream analysis, the fascinating recent range of a data stream 

needs to be defined flexibly. Based on this range, an algorithm can be able to discover when a transaction becomes 

superseded and needs to be disregarded. This paper proposes a method for discovery of recently frequent itemsets over a 

data stream based on a sliding window. The interesting up to date range of a data stream is defined by the size of a 

window. The proposed method can be employed to monitor the recent change of implanted knowledge in a data stream. 
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