

International Journal of Technical Innovation in Modern Engineering
& Science (IJTIMES)

Impact Factor: 5.22 (SJIF-2017),e-ISSN:2455-2585
International Conference on Smart Cities (ICSC-2019)

Volume-05, Special Issue_March_2019.

Organized By: Ansal University, Gurgaon, Haryana. 1

A Fast & Efficient Approach for Large Data Encryption & DecryptionUsing

RSA Algorithm

Sayyam Jain
1
, AlpanaJijja

2

Ansal University, Gurugram, Haryana - 122003, India
1,2

Abstract. With the ever-increasing attacks on data and networks, every organization needs to protect, process, and

transmit their data securely through various cryptographic means. One such cryptographic algorithm is RSA (Rivest,

Shamir & Adleman). Nowadays, RSA is widely used as it a public – key cryptosystem, which generates 2 keys: Public

Key and Private key and requires both to decrypt data. Through this paper, the author has suggested afast and

efficient approach of the implementing the algorithm. Furthermore, the performance of both classical and proposed

method has been compared using various bit sizes.

Keywords: RSA, AES, Cryptography, Hashmap

1 Introduction

Transmitting data securely is one the biggest challenges today. Data generated by any organization needs to be encrypted

to protect it from falling into wrong hands thus preventing its misuse. This can be achieved by using various

cryptographic algorithms like RSA & AES. Although being a block cypher, AES offers better security than RSA

algorithm, at same bit size. But, even the keys of AES need to be transmitted to decipher the encrypted text (referred as

cipher text) into original text (referred as plain text), which are now encrypted using RSA. One of the major advantages

of using RSA Algorithm is that it is based on the mathematical problem of factoring large numbers. Exploiting the non -

existence of a non – quantum-based algorithm to efficiently factorize large numbers, RSA still remains a vital part of

modern cryptography. However, RSA Algorithm are dependent on exponential powers, and is very computationally

expensive thus its application on low powered systems to encrypt and decrypt very large messages with larger bit size

still remains a challenge [1]. Through this paper, the author has tried to develop a less computationally expensive system,

which can be used to encrypt and decrypt very large messages, efficiently through the use of HashMap.

A HashMap works on the principle of hashing. Wherein a Key is stored in a HashMap, thereby generating a Hash for the

Key, which is then used to calculate the bucket for the Key, where it would be stored.When a value is to be retrieved

from a HashMap, the Hash for Key is calculated again which is again used to calculate the bucket where Key and Value

are stored.

Using the same method, the author was able to encrypt 100,000 characters for 2048 bit RSA in less than 7 seconds

2 Literature Review

In 1977, Rivest, Shamir and Adleman (RSA) introduced an important public key crypto-system based on computing

modular exponentials. The security of RSA cryptography ultimately lies in the ability of modern devices and computing

methods to effectively factorize large integers. [2]

Bahadoriet. al implements a novel approach for secure and fast key generation of the public key cryptographic algorithm

of RSA. This method has been implemented on a typicalsmartcard equipped with a crypto-coprocessor and a true random

number generator. An efficient method for generating the large random prime numbers is proposed which considerably

reduces the total time required for generating a key pair.

There is up to 50% reduction in total generation time compared to the latest reported methods. [3]

H. Ren-Junn, et.al are proposed an efficient decryption method not only based on Chinese remainder theorem (CRT) but

also on strong prime RSA criterion. The proposed decryption method only takes 10% computational costs of the

traditional decryption method. Effectively reducing 66% computational cost than that of decryption methods based on

CRT only. In a word, the speed of our proposed method is almost 2.9 times faster than the decryption method based on

CRT. The proposed method enhances the performance of the RSA decryption operation [4].

A. Selby and C. Mitchell proposed two new algorithms that facilitate the implementation of RSA in software. Both

algorithms essentially deal with performing modular arithmetic operations on very large numbers, which could be of

potential use to applications other than RSA. One algorithm performs modular reduction and the other performs modular

multiplication. Both algorithms are based on the use of look-up tables to enable the arithmetic computations to be done

on a byte by byte basis. [5]

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)

International Conference on Smart Cities (ICSC-2019)

Volume- 05, Special Issue_ March_2019.

Organized By: Ansal University, Gurgaon, Haryana. 2

Shen Guichenget. al did a fast implementation of RSA using Java BigInteger Library. They concluded thatalthough their

speed of encryption was very fast, the speed of decryption was slower. The total time we cost in generating two primes,

computing N, D, and E, encrypting and decrypting was 7 seconds. [6]

Similarly, another implementation was achieved using the GNU MP Library. Rajorshi Biswas et al. achieved an

encryption and decryption time of 0.05 seconds and 0.9 seconds respectively, for 10,000 characters, processing 50

characters at once on 512 bit RSA. [7]Due to the slow nature of RSA Cryptosystem, it is still unsuitable for encryption of

large messages. [8-12]

3 Methodology

3.1 Existing System

The RSA Algorithm is based on the mathematical problem of factoring large numbers. [2] This mathematical problem of

prime factorisation is limited by non – existence of an efficient algorithm and current processing power, which is

exploited by RSA for encrypting and decrypting data as follows [4]:

1. Generate 2 Prime Numbers: p & q. (Eq. 1)

2. Calculate n = p * q. (Eq. 2)
3. Calculate Φ (n) = (p - 1) * (q - 1), where Φ (n) is kept secret. (Eq. 3)

4. Calculate e such that 1 < e < Φ (n) and GCD (e, Φ (n)) = 1. (Eq. 4)

5. Compute d, modular multiplicative inverse of e (mod Φ (n)) such that it satisfies the relation: d * e mod Φ (n) = 1. (Eq. 5)

6. Kp = (e, n) is the public key. (Eq. 6)
7. Ks = (d, n) is the private key. (Eq. 7)

8. Let m is a plaintext, Encrypted Message (c) is : me mod n. (Eq. 8)

9. Letting c be encrypted text, deciphered text is : cd mod n. (Eq. 9)

3.2 Proposed Approach

3.2.1Key generation

Keys generation in RSA algorithm is the most essential step in data encryption. For a given „N‟ - bit RSA, 2 prime

numbers (p & q) are generated of N/2 bits (Eq. 1).

The generated prime numbers p & q are of bit length, half the size of public and private keys. These values are multiplied

to be used as modulus for both public and private keys (Eq. 2).

Further, totient is calculated by subtracting 1 from both prime numbers (p & q) and multiplying them (Eq. 3).

To determine the value of coprime, a random number is generated with bit length the size of Key, and is incremented

until the greatest common divisor of co-prime and totient is 1 (Eq. 4).

Finally, the modulo Inverse of coprime and totient is calculated (Eq. 5). Hence, public and private keys for the user are

generated successfully (Eq. 6 & Eq. 7).

3.2.2Data Encryption

Given the public and private keys, the plaintext is treated as a collection of alphanumeric characters. Each character in

the file is then converted to integers by simply mapping it to its ASCII code. Processing the characters and converting

them into ASCII form as „m‟, encryption is achieved by computing m ^ e mod n (Eq. 8).

Since, text can often be large and there might be recurring characters. In such cases, encrypting same character again and

again is expensive in terms of the time required to encrypt. Hence, instead of encrypting the same characters again and

again, a HashMap is maintained, which stores characters as key and their encrypted value as Value.This reduces their

time complexity to O (1) in case they appear again from ASCII pool which contains 95 printable characters from 32 to

126.When each character is encrypted, the results are combined to form the output.

3.2.3 Data Decryption

Given the public and private keys, in the encrypted file, the function processes each encrypted integer by computing the

value of c ^ d mod n (Eq. 9).This time again, instead of decrypting the same integers again and again, we maintain a

HashMap which stores integers as key and their decrypted Character Value as Value. This reduces their calculation time

to O(1) in case they appear again from ASCII pool which contains 95 printable characters from 32 to 126. The decryption

of the encrypted file is complete, once all the integers (cipher text) in the encrypted file are processed and are combined

which is then converted to a single stream of alpha-numeric characters and written to a file.This completes the decryption

process.

4 Observations

Al the time duration recorded below have been measured on an Intel® Core™2 Duo Processor @ 2.93Ghz, on a

GNU/Linux platform (kernel 4.10.0).

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)

International Conference on Smart Cities (ICSC-2019)

Volume- 05, Special Issue_ March_2019.

Organized By: Ansal University, Gurgaon, Haryana. 3

4.1 Key Generation Time

Below are the time taken for key generation for different bit sizes. Bit size of key used is twice of generated prime

number. The times are averaged over 3 samples and are same for both classical and proposed algorithm

Table 1. Time duration to generate public and private keys

4.2 Data Encryption/ Decryption Time

Below are the times duration taken for encrypting and decrypting a file with 100,000 characters. The timedurations are

recorded for both classical RSA algorithm and the proposed RSA algorithm.

Table 2. Time duration to Encrypt and Decrypt a file with 100,000 characters using Classical RSA Algorithm

Bit Size (Key) Encryption Time

(seconds)

Decryption Time

(seconds)

128 Bit 4.423 3.092

192 Bit 12.305 11.409

256 Bit 14.028 13.080

512 Bit 94.418 101.023

768 Bit 190.910 189.342

1024 Bit 418.310 421.657

1280 Bit 741.592 739.675

1536 Bit 1233.232 1231.452

1792 Bit 1946.524 1947.906

2048 Bit 3316.777 3314.633

Table 3. Time taken to Encrypt and decrypt a file with 100,000 characters using Proposed RSA Algorithm

Bit Size (Key) Encryption Time

(seconds)

Decryption Time

(seconds)

128 Bit 0.404 0.398

192 Bit 0.484 0.512

256 Bit 0.612 0.656

512 Bit 1.224 1.203

768 Bit 1.765 1.954

1024 Bit 2.715 2.947

1280 Bit 3.591 4.334

1536 Bit 4.230 6.051

1792 Bit 5.418 6.686

2048 Bit 6.632 8.679

Bit Size (Key) Bit Size (Prime No.) Key Generation Time

(seconds)

128 Bit 64 Bit 0.023

192 Bit 96 Bit 0.029

256 Bit 128 Bit 0.038

512 Bit 256 Bit 0.059

768 Bit 384 Bit 0.092

1024 Bit 512 Bit 0.122

1280 Bit 640 Bit 0.183

1536 Bit 768 Bit 0.188

1792 Bit 896 Bit 0.380

2048 Bit 1024 Bit 0.541

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)

International Conference on Smart Cities (ICSC-2019)

Volume- 05, Special Issue_ March_2019.

Organized By: Ansal University, Gurgaon, Haryana. 4

Fig. 1. Time taken to Encrypt a file with 100,000 characters using Classical RSA Algorithm

Fig. 2. Time taken to Encrypt and Decrypt a file with 100,000 characters using Proposed RSA Algorithm

5 Results & Analysis

1. From the above results, we infer that, the time taken to encrypt and decrypt the file increased exponentially when

classical algorithm was applied (Fig.1) but increased linearly (Fig.2) when proposed RSA algorithm was used.

2. In addition, the files encrypted and decrypted using proposed algorithm were processed more than 450 times faster

than classical one (for 2048 bit) (Table 2. & Table 3.)

Hence, using the above approach, large texts can now be encrypted as well as decrypted in a very short amount of time

duration.

6 Conclusion & Future Scope

Through this paper, the author has attempted to reduce the time taken to Encrypt and Decrypt a file using Hashmap on

RSA Algorithm, which allows larger messages with keys of higher bit size to be encrypted which were not feasible

earlier due to time and processing power constraints.

Further, mathematical advancements in future along with the proposed and efficient approach may be applied together to

reduce computation times, not only for RSA Algorithm, but also other cryptosystems which rely on Byte by Byte

processing.

0

500

1000

1500

2000

2500

3000

3500

1 2 8
B I T

1 9 2
B I T

2 5 6
B I T

5 1 2
B I T

7 6 8
B I T

1 0 2 4
B I T

1 2 8 0
B I T

1 5 3 6
B I T

1 7 9 2
B I T

2 0 4 8
B I T

TI
M

E
(S

EC
O

N
D

S)

BIT SIZE OF KEY

ENCRY PTI ON OF A F I LE WI TH 100,000
CHARACTERS USI NG CLASSI CAL RSA ALGORI THM

Encryption Time (seconds) Decryption Time (seconds)

0

2

4

6

8

10

1 2 8
B I T

1 9 2
B I T

2 5 6
B I T

5 1 2
B I T

7 6 8
B I T

1 0 2 4
B I T

1 2 8 0
B I T

1 5 3 6
B I T

1 7 9 2
B I T

2 0 4 8
B I T

TI
M

E
(S

EC
O

N
D

S)

BIT SIZE OF KEY

ENCRY PTI ON AND D ECRY PTI ON A F I LE WI TH
100,000 CHARACTERS USI NG PROPOSED RSA

ALGORI THM

Encryption Time (seconds) Decryption Time (seconds)

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES)

International Conference on Smart Cities (ICSC-2019)

Volume- 05, Special Issue_ March_2019.

Organized By: Ansal University, Gurgaon, Haryana. 5

7 References

1. Kleinjung; et al. (2010-02-18). "Factorization of a 768-bit RSA modulus", International As-sociation for Cryptologic

Research.

2. R. L. Rivest, A. Shamir and L. Adleman “A method for obtainingdigital signatures and public-key cryptosystems”

Communications ofthe ACM, vol. 21, pp. 120-126, 1978.

3. M. Bahadori, M. R. Mali, O. Sarbishei, M. Atarodi and M. Sharifkhani “A novel approach for secure and fast

generation of RSA public and private keys on SmartCard” NEWCAS Conference (NEWCAS), 2010 8th IEEE

International, 2010, pp. 265-268

4. H. Ren-Junn, S. Feng-Fu, Y. Yi-Shiung and C. Chia-Yao “An efficient decryption method for RSA cryptosystem”

Advanced Information Networking and Applications, 2005 (AINA 2005). 19th International Conference on, 2005, pp.

585-590 vol.1

5. A. Selby and C. Mitchell “Algorithms for software implementations of RSA” Computers and Digital Techniques, IEE

Proceedings E, vol. 136, pp. 166-170, 1989.

6. Shen Guicheng, Liu, Bingwu and Zheng, Xuefeng, “Research on Fast Implementation of RSA with Java”,

International Symposium on Web Information Systems and Applications (WISA‟09), Academy Publisher, Nanchang,

China, 2009, pp. 186-189.

7. Rajorshi Biswas, ShibdasBandyopadhyay, Anirban Banerjee, “Fast Implementation of the RSA Algorithm Using the

GNU MP library”, in Proc. National workshop on cryptography, (2003), pp. II-30.1 to II-30.15

8. Sami A. Nagar and SaadAlshamma “High Speed Implementation of RSA Algorithm with Modified Keys Exchange”,

6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications

(SETIT), pp.639-642, March 2012.

9. J. Joshi, et al. “Network Security” Morgan Kaufmann, 2008

10. W. Stallings “Network security Essentials: Applications andStandards” Pearson Education India, 2000.

11. W. Stallings “Cryptography and network security vol. 2” prentice hall, 2003.

12. W. Stallings “Network and internetwork security: principles and practice” Prentice-Hall, Inc., 1995.

