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Abstract— In this paper, we propose to study an epidemic model of childhood disease in a human 

population. Fractional order SIR epidemic model is considered and its discrete form is obtained. Local 

asymptotic stability of disease free equilibrium and endemic equilibrium points are discussed and the basic 

reproduction number 0  is obtained via next generation matrix method. Time plots and phase portraits are 

analyzed under suitable conditions. Numerical examples are used to verify the stability results. 
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I. INTRODUCTION 
Mathematical models have become an indispensable tool in analyzing the spread and control of infectious diseases. 

Mathematical models in epidemiology attempts to model, study and analyze the disease propagation in a population. In 

1927, William Kermack and Anderson McKendrick introduced compartmental models and published in “Contribution to 

the mathematical theory of epidemics”. They introduced the SIR model, the total population ( )N t  is partitioned into 

three compartments, S -Susceptible, I -Infected and R -Recovered [1,3]. 

 

II. FRACTIONAL CALCULUS 
Fractional calculus is the field of mathematical analysis which deals with the theory and applications of integrals and 

derivatives of arbitrary order. One of the fundamental problems in control is the stability analysis of the dynamic system. 

The stability problem for linear, continuous time, discrete time fractional order systems has stimulated the interest of 

mathematicians and researchers, as its applications vary from numerical analysis to applied fields of engineering, science, 

economics and finance [2, 4, 8]. The dynamics of the SIR model is described in the flow diagram as follows: 

                        
Figure  1: Flow diagram of SIR epidemic model 

 

In this paper, we consider the  fractional order differeintional equations [5, 6]  of the form  
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where   is the natural birth and death rates, P  (with 0 < <1P ) is the fraction of citizens vaccinated at birth each year, 

  is the contact rate,   is the recovery rate,   is the fractional order (0,1]  ,  0 0 0(0) = , (0) = , (0) =S S I I R R  are the 

initial values, h  is the step size. This fractional order SIR model considers the efficacy of the vaccine is 100% .  

Applying the discretization process for a fractional order system described in [7, 9], we obtain the discrete fractional 

order SIR epidemic model as follows:  
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III. EQUILIBRIUM POINTS AND BASIC REPRODUCTIVE NUMBER 

Our model (2)  has two equilibrium points: 

    (i) Disease Free Equilibrium (DFE) point  0 = 1 ,0,E P P   

    (ii) Endemic Equilibrium (EE) point  * * *

1 = , ,E S I R , 

where * =S
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     Using the next generation matrix are obtain the basic reproduction number 0
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IV. STABILITY ANALYSIS WITH SIMULATIONS 

In this section, we shall study the equilibrium solutions of model (2)  and their local stability. We compute the 

Jacobian matrix corresponding to each equilibrium point and Jury conditions are used to analyze the stability. 

Lemma 1. [Jury Conditions]Suppose the characteristic polynomial is 3 2

1 2 3( ) =P a a a      . The solutions 

, =1,2,3i i , of ( ) = 0P   satisfy | |< 1i  iff the following three conditions hold:   

    (i) 1 2 3(1) =1 > 0P a a a     

    (ii) 
3

1 2 3( 1) ( 1) =1 < 0P a a a       

    (iii) 
2

3 2 3 11 ( ) >| |a a a a   (or) 3 < 1a   

 Lemma 2. Let 
3 2

1 2 3( ) =P a a a       where 1 2,   and 3  are the three roots. The topological properties of the 

equilibrium of the model (2)  are  

           (i)  
1 < 1 , 

2 < 1  and 
3 < 1  then  * * *, ,E S I R  is a sink (locally asymptotic stable).  

          (ii)  
1 > 1 , 

2 > 1  and 
3 > 1  then  * * *, ,E S I R  is a source (unstable).  

          (iii) 
1 > 1 , 

2 < 1  and 
3 < 1  (or 

1 < 1 ,
2 > 1  and 

3 > 1 ) then  * * *, ,E S I R  is a saddle (unstable).         

          (iv)  
1 = 1 , 

2 = 1  and 
3 = 1  then  * * *, ,E S I R  is non-hyperbolic. 

Theorem 1. If 00 < < 1 , the DFE point 0E  of the model (2)  is Locally Asymptotically Stable(LAS) and the DFE 

point 0E  is unstable if 0 > 0 .   

Proof. The characteristic equation of the model (2)  about DFE point 0E  is  
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The eigen values  evaluated at 0E  are 

 1,2 3=1 , =1 .H H      

From the Jury conditions, if (1) > 0, ( 1) < 0P P  , 3 < 1a  and the roots of ( )P   satisfy | |< 1j  and 00 < < 1  then DFE 

point 0E  is LAS. Suppose (1) < 0P  and 0 > 1  then DFE point 0E  is unstable.  
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Proposition 1. The DFE point 0E  of the model (2)  is the following conditions hold,   

            (i) 0E  is a sink if 0 < < 2H  and 0 < < 2H .  

           (ii) 0E  is a source if > 2H  and > 2H .  

           (iii) 0E  is a saddle if 0 < < 2H  and > 2H  (or) > 2H  and 0 < < 2H .  

           (iv) 0E  is a non-hyperbolic if = 2H  and = 2H .  

 We consider the initial values 0 0 0= 0.94, = 0.06, = 0.0S I R  for numerical study. 

Example 1.  In case 1, since  (1) = 0.0000022428 > 0P , ( 1) = 7.7792 < 0P   , 3 = 0.9452 <1a   and 0 = 0.9545 <1  

then the DFE point 0 = (0.7,0,0.3)E  of the model (2)  is LAS. (see Fig.2). In case 2,  since  (1) = 0.00000033642 > 0P , 

( 1) = 7.9165 < 0P   , 3 = 0.9792 <1a   and 0 = 0.6 <1 , the DFE point 0 = (0.1,0,0.9)E  of the model (2)  is LAS 

(see Fig.3).    

TABLE  I.  PARAMETERS FOR NUMERICAL SIMULATIONS OF THE MODEL (2). 

 

 

 

 

 

 

 
Fig. 2 Time plots of DFE point 0E  for different fractional order (0.5,1.0]   with stability 0 < 1 . 

 

 

 
Fig. 3 Time plots of DFE point 0E  for different fractional order (0.5,1.0]   with stability 0 < 1 . 

 

Parameters P        h    
0E  

Case 1  0.3  0.75  0.35  0.2  0.1 0.9  (0.7,0,0.3)  

Case 2  0.9  0.9  0.1 0.05  0.1 0.9  (0.1,0,0.9)  
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Theorem 2. The EE point 1E  of the model (2)  is LAS if 0 > 1 .   

Proof. The characteristic equation of the model (2)  about EE point 1E  is  
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 The eigen values  evaluated at 1E  are 
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From the Jury conditions, if (1) > 0, ( 1) < 0P P   and 33 < 1a , and the roots of ( )P   satisfy | |< 1j  and 0 > 1  then the 

EE point 1E  is LAS. Suppose (1) < 0P  then EE point 1E  is unstable.  

 

Proposition  2. The EE point 1E  of the model (2)  is the following properties.    

 (i) 1E  is a sink if 0 < < 2H  and 
20 < ( ) < 2 ( ) 4H H       .  

 (ii) 1E  is a source if > 2H  and 
2 ( ) > 2 ( ) 4H H       .  

 (iii) 1E  is a saddle if 0 < < 2H  and 
2 ( ) > 2 ( ) 4H H         

       (or) > 2H  and
20 < ( ) < 2 ( ) 4H H       .  

  (iv) 1E  is a non-hyperbolic if = 2H  and 
2 ( ) = 2 ( ) 4H H       .  

 

Example 2. In case 3, we have (1) = 0.00000033642 > 0P , ( 1) = 7.9598 < 0P   , 33 = 0.9900 <1a   and 

0 =1.5833 >1  and the EE point 1 = (0.6,0.0219,0.3781)E  of the model (2)  is LAS (see Fig. 4 & 5). 

  
Fig. 4 Time plots and phase portraits of EE point 1E  with stability 0 > 1  
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TABLE  II. PARAMETERS FOR NUMERICAL SIMULATIONS OF THE MODEL (2). 

 

 

 

 

 

 

 

 
Fig. 5 Time plots of EE point 1E  for different fractional order (0.5,1.0]   with stability 0 > 1  

 

In case 4, from (1) = 0.0000010920 > 0P , ( 1) = 7.9449 < 0P   , 33 = 0.9864 <1a   and 0 = 2.5457 >1  then the EE 

point 1 = (0.3889,0.0515,0.5596)E  of the model (2)  is LAS (see Fig. 6 & 7). 

 
Fig. 6 Time plots and phase portraits of EE point 1E  with stability 0 > 1  

      
Fig.7 Time plots of EE point 1E  for different fractional order (0.5,1.0]   with stability 0 > 1  

Parameters P        h    
1E  

Case 3  0.05  0.8  0.45  0.03  0.1 0.9  (0.6,0.0219,0.3781)  

Case 4  0.01 0.9  0.32  0.03  0.1 0.9  (0.3889,0.0515,0.5596)  

Case 5  0.01 0.9  0.405  0.03  0.1 0.9  (0.4833,0.0349,0.4817)  
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 In case 5, from (1) = 0.00000092045 > 0P , ( 1) = 7.9526 < 0P   , 33 = 0.9883 <1a   and 0 = 2.0483 >1  then the EE 

point 1 = (0.4833,0.0349,0.4817)E  of the model (2)  is LAS (see Fig. 8 & 9).   

 
Fig. 8 Time plots and phase portraits of EE point 1E  with stability 0 > 1  

 

 
Fig. 9 Time plots of EE point 1E  for different fractional order (0.5,1.0]   with stability 0 > 1  
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