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Abstract— This paper proposed a multi-objective based hybrid methodology to understand Economic 

Emission Dispatch (EED) issue coordinates wind power with thermal units. The mixture approach is the 

joined execution of both the Improved Fruit Fly Optimization Algorithm (IFOA) and Artificial Neural 

Network (ANN) system. In this work, the IFOA is used for optimizing the blend of the thermal generators 

in view of the wind power vulnerability. The ANN is used to catch the vulnerability occasions of wind 

power to the system is guaranteed the high use of wind power. Accordingly, a solution of the proposed 

optimization approach is limited the total fuel cost and emission cost. To approve the proposed strategy 

viability, the six generating units thermal system is considered with fuel and emission cost as two clashing 

targets to be upgraded in the meantime. The proposed strategy is executed in MATLAB working platform 

and the outcomes are inspected with thinking about generation units and which is contrasted and different 

solution procedures. The comparison happens uncovers the nature of the proposed approach and 

broadcasts its capacity for dealing with multi-objective optimization problems of power systems. 

 

Keywords— Economic Emission Dispatch, wind power generator, thermal generators, IFOA, ANN, Multi-

objective optimization 
I. INTRODUCTION 

 

Huge research has been led all through the world for improvement of manageable, renewable and productive energy 

systems keeping in mind the end goal to meet the necessities of the expanded populace and to diminish the broad 

utilization of fossil fuels [1]. Expanding energy costs, environmental concerns and rapid depletion of the known fuel 

saves have essentially expanded the extent of renewable energy sources (RES). RES are utilized in the networks of the 

power system to meet environmental, economic, industrial, and community level needs [2]. As of late, the wind power, 

solar and thermal power pulled into much consideration like promising renewable energy resources [3]. The energy 

resources have different attributes regarding operational costs and unwavering quality. Wind energy generation has 

changed into an elective source of energy for the customary resources [2]. On account of the wind irregularity and 

eccentrics, the infiltrations of wind power have extended, more imaginative and refined systems are grasped in the 

planning of existing creating limit, strategies and operating protocols [4, 5].  

Despite the fact that its power generation minor cost is zero along these lines, WEGS forces an additional weight of costs 

on the power system [6]. Alongside the extra holds coordination to ensure a dependable and economical power supply, 

auxiliary administrations ought to be booked appropriately [7]. The economic and environmental issues in the power 

generation have gotten impressive consideration. Economic Dispatch (ED) is an indispensable and most continuous 

advance in power system operational arranging [8]. ED is an optimization issue that distributes power to each dedicated 

creating unit in order to limit the total operational cost, subject to constraints. Different constraints incorporate power 

balance, power limits of generators, restricted working zones, ramp rate limits and so forth. the issue is figured as a 

multi-objective optimization problem [10, 11]. It comprises in dispersing the active and renewable preparations between 

the power stations of the most economic route, to decrease the emissions of the contaminating gases and to keep up the 

security of the network after infiltration of renewable energy. The number of choice factors of the issue is identified with 

every one of the nodes of the network. A few optimization methods with equality and inequality constraints have been 

utilized for ED. The optimization methods are PSO [14], Tabu Search [17], Sequential Quadratic Programming (SQP), 

Enhanced PSO (EPSO) [16], Artificial Bee Colony (ABC) [12, 13], Genetic Algorithm (GA) [9], Hybrid Shuffled 

Differential Evolution (SDE) [15] ], Neural Network [18, 19] et cetera. All above-said systems can take care of EED 

issue, however, a number of samples required are huge and consequently the unpredictability of the algorithm is 

sufficiently high so as not to enable it to work in real-time [20]. 

In this paper, a multi-objective based hybrid methodology of IFOA with ANN is used to solve EED (Economic Emission 

Dispatch) problem in power system. The proposed technique is clearly described in detail. The remainder of this article is 

organized as follows; the recent research work and the background of the research work are discussed in Section 2. The 
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proposed technique thorough explanation is explained in Section 3 and 4. The suggested technique achievement results 

and the related discussions are given in Section 5 and the paper is concluded in Section 6.  
 

II. RECENT RESEARCH WORKS: A BRIEF REVIEW 
 

Several research works have previously existed in the literature which was based on the unit commitment with the 

renewable system using various techniques. Some of the works are reviewed here. 

V. K. Jadoun et al. [21] have clarified the stochastic nature of wind and solar was demonstrated by Weibull and beta 

distributions, separately. Additionally, economic Optimization was acquired by a recently created algorithm called 

Improved Fireworks Algorithm with the non-uniform operator (IFWA-NMO). This presents adaptive dimension strategy, 

limiting mapping operator and non-uniform operator. The adequacy of proposed IFWA-NMO was examined on the 

standard Dynamic Economic Load Dispatch (DELD) system and furthermore utilized to understand conventional dead 

with the wind-solar system. M. Kheshti et al. [22] have built up a utilization of another proposed Double Weighted 

Particle Swarm Optimization (DWPSO) system in illuminating Non-convex Combined Emission Economic Dispatch 

(CEED) issues with wind power infiltration. Likewise, the systems used to explaining the non-convex multiple fuel 

option economic dispatch issue have been mechanically exhibited. DWPSO effectively decreases the creation costs and 

risky emissions considering wind power infiltration, chooses the best fuel kinds of the generators and alters the practical 

and ideal settings to apportion load demand to the online age units in power system. To take care of the CEED issue of 

the microgrid considering the solar and wind power cost functions the Modified Harmony Search (MHS) algorithm was 

built up by W. E. Elattar et al. [23]. The introduced algorithm was inferred by modifying the parameters as well as 

enhancing the structure and operation of the first harmony search (HS) algorithm. The solution of the CEED issue of the 

microgrid considering the solar and wind power cost functions was acquired for various situations utilizing the MHS 

algorithm and some as of late distributed algorithms. For upgrading the economic dispatch issue, another algorithm was 

found by C. Shilaja et al. [24]. The new algorithm depended on CEED for photovoltaic (PV) plants and thermal power 

generation units. In CEED approach for extemporizing the economic dispatch Euclidean affine flower pollination 

algorithm (eFPA) and Binary Flower Pollination Algorithm (BFPA) have been utilized for taking care of the 

optimization issue for twenty PV and five thermal generators were finished with full solar radiations and with lessened 

solar radiation.  

Multi-objective economic emission power dispatch issue plan and arrangement incorporating stochastic wind, solar and 

small-hydro (run-of-river) power was talked about by P. P. Biswas et al. [25]. Weibull, lognormal and Gumbel 

probability density functions were utilized to compute accessible wind, solar and small-hydro power respectively. Some 

conventional generators of the standard IEEE 30-bus system were supplanted with renewable power sources for ponder 

reason. R. M. Rizk-Allah et al. [26] illustrated a parallel hurricane optimization algorithm (PHOA) for understanding 

economic emission load dispatch (EELD) issue in present-day power systems. In PHOA, a few sub-populations moving 

freely in the search space with the point of all the while optimize the issue objectives thinking about the neighborhood 

conduct between sub-populations. By along these lines, it was proposed to scan for the Pareto optimal solutions that were 

in contrast to the single optimal solution. The inborn attributes of parallelization strategy can improve the Pareto 

solutions and increment the union to achieve the Pareto optimal solutions. A. A. Elsakaan et al. [27] have been depicted 

an Enhanced Moth-Flame Optimization (EMFO) algorithm for illuminating the non-convex ED issue with valve-point 

impacts and emissions. It decides the optimal generation timetable of producing units by limiting both fuel cost and 

emission cost of the system constraints were accomplished. The Moth-Flame Optimization (MFO) was an ongoing 

nature-inspired strategy, which depended on the navigation mechanism called transverse orientation of moths in space. 

The EMFO joins the benefits of the customary MFO and levy flight by focus the search space. The utilization of lévy-

flight have the noticeable properties to expand the assorted variety of population. 

A. Background of the Research Work 

ED with renewable energy plays a significant role since the problem depends on the operating cost of the generation 

units. The review shows that the formulation of economic dispatch problem with renewable energy is directly improving 

the solution methodology. In renewable energy, wind power is sustained more in power system. For that reason, the unit 

commitment problem is a complicated and more challenging task because of the uncertainty power generation of the 

wind energy system. Therefore, the multi-objective optimization is formed as a problem with uncertainty. Different 

methods are used to accommodate wind and solar power variability including advanced unit commitment and balancing 

wind and solar power variations. The purpose of this model has improved the formulated model by considering wind 

power uncertainty will lead to a better solution which can withstand the estimate errors in the real time. Numerous 

methods are available to solve the unit commitment problem such as improved fireworks algorithm with the non-uniform 

operator (IFWA-NMO), modified harmony search (MHS) algorithm, Euclidean Affine Flower Pollination Algorithm 

(eFPA), Binary Flower Pollination Algorithm (BFPA), Enhanced Moth-Flame Optimization (EMFO) and so on. But 

those methods only concentrate the thermal generation into account and did not consider the impact of wind power 

uncertainty. In the literature, very few works are presented to solve this problem and the drawbacks of the work have 

motivated to do this research work. 

III. PROPOSED THERMAL-WIND BASED ECONOMIC EMISSION DISPATCH 
 

In this paper, the hybrid methodology is proposed for reducing the economic and emission dispatch problem of the 

renewable energy system. The hybrid methodology is the combination of both the improved fruit fly optimization 

algorithm (IFOA) and artificial neural network (ANN). In light of the wind power uncertainty, the IFOA is optimizing 
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the combination of the thermal generators. By the probability occurrence of wind power and production cost of thermal 

units, the multi-objective function will be formed. ANN will be used to predict the uncertainty events of wind power. 

Here, the generation scheduling involving planned outputs of thermal, and wind power units is the main goal for the EED 

problem [26]. The fuel cost and emission cost of the electrical power system can be minimized by this generation 

scheduling accomplished by the scheduling period given to the various equality and inequality constraints. The problem 

formulation of the EED model for wind and thermal power is derived as follows,  

 

A.  Multi-Objective Formulation of EED 

The EED multi-objective function minimizes the operating cost such as fuel cost and start-up cost of the generating units 

by considering the wind power and thermal units. Here, the wind power generation and thermal unit’s allocations are the 

major problems. Since the wind power depends on nature and the thermal unit’s allotments are possible only at the peak 

hours, the wind power is designed as the probability function. According to the wind availability, the operational costs of 

the thermal generators are reduced. The Multi-objective function of the EED model for thermal and wind power 

considered is given as follows (1). 

 

][ TCFMin                               (1) 

Here, TCF  is the total cost that can be described as in equation (2). 
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Where 
 

 ),( tiPf TGc  indicates the fuel cost of the thermal generating units ($). H stand for the total number of hours. 

),( tiU  is the status of the unit i at 
tht  hour, i.e., ‘1’ for ON and ‘0’ for OFF. ),( tiSC denotes the start-up cost of the 

unit i at 
tht  hour and ),( tjprobWT  is the probability of the wind generator unit j at 

tht  hour. The fuel cost and the start-

up cost evaluation is described in the following equation (3). 
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Recommended font sizes are shown in Table 1.  

 

B. Wind Power Formulation 

The stochastic variable wind speed (m/s) is utilized to decide the yield energy of a wind generator. For the most part, it is 

trusted that two parameter of Weibull probability density Function (PDF) the technique has a specific level of exactness 

in wind speed displaying. Here, for the utilization in the EED issue, the Weibull PDF [27, 28] for wind speed is accepted 

and after that changed to wind control conveyance framework. The speed v (m/s) for the Weibull PDF )( svf is given as, 

 

  0,)/(exp)/)(/()( 1   vcvcvchvf h
s                                                                                                                       (4)  

  

The corresponding Cumulative Distribution Function (CDF) )( svF is derived based on the Weibull PDF is represented 

as follows, 

 

 h
s cvvF )/(exp1)(                                                                                                                                                      (5)   

 

Where, )( svf and )( svF are the PDF and CDF respectively. c and k are the two positive numbers known as the scaling 

factor and the shape factor separately. The output power of the wind generator and the speed of wind are related as,
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Where, rP and rv are the rated output power and rated wind speed while cinv and coutv are the cut-in and cut-out speed of 

the wind respectively. At that point when the wind speed is between the rated and the cut-out wind speed, the yield of the 

wind generator is in working condition. When the wind speed is within the range of cut-in and cut-out speed, wP is in non 

zero condition. wP is in the range of [0, Pr] for CDF can be formulated as, 
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For formulating the model of economic emission dispatch problems, the equation (7) is important since it has the 

stochastic wind power.           

                                                                                               

C. Thermal Power Formulation 

1) Fuel Cost of Thermal Power Generation: In a power system, the thermal plant generation cost is considered as fuel 

cost during the scheduling period [29]. The thermal power output with a quadratic function is formulated as, 
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Where  fF  speaks for fuel cost objective of the thermal power system, TitP  represents the power generated at a time t  

in 
thi the thermal unit, T represents the total dispatch period length, ix  , iy , iz , ip , iq

 
represents the 

thi thermal unit 

coefficients of fuel cost, min,iP
 

indicates the minimum output of thi the thermal unit, TiN  is the number of thermal 

plants. 

2)  Emission Cost of Thermal Power Generation: The total polluting emissions of thermal power generation takes into 

consideration the release of harmful gases like NOx, SO2. The thermal power output of total emission cost is based on the 

sum of quadratic and exponential functions and it can be derived as follows:  
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Where,  eF represents the emission cost of the thermal power system and ia , ib , ic , id , ie  represents the thi
 
thermal 

unit coefficients for emission cost. 

 

D. Constraints of the System 

The system constraints have stochastic characteristics due to the presence of wind power generators [30]. The constraints 

can be satisfied at a pre-defined confidence level by the form of probability and the addition of stochastic variables. 

1) Constraints of Power Balance: The total power generated from the different types of sources like the thermal 

generating unit and wind power generating unit at each hour must be equal to the load of the corresponding hour. This 

constraint is explained in the following equation (10).   
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Where,  )(tPTD is the total demand at period t ; ),( tiPTGi  is the power generated from the thermal unit i  at the hour 

t ; ),( tjP NN
WT  is the power generated from the wind unit j  at hour t , which is attained from the ANN. 

2)  Constraints of Thermal Unit: The thermal generating system consists of different types of constraints such as 

generation capacity, minimum uptime and minimum downtime of the generators and ramp generation, which are 

described as follow. 

 

(i). Generating capacity constraints [28] 

 

),(),(),( maxmin tiPtiPtiP TGTGTG 
                               

(11) 

 

 

(ii). Minimum uptime limit [28] 
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(iii). Minimum downtime [28] 
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(iv). Ramp generation [30] 

 

)()1,(),( iRUtiPtiP TGTG     as generation increases                                     (14) 

 

)()1,(),( iRDtiPtiP TGTG     as generation increases                                   (15) 

 

Where, ),(min tiPTG and ),(max tiPTG  are the minimum and maximum power of thermal generating unit i at tht  hour; 

)(tupMin  is the  minimum uptime of thermal generating unit at tht  hour; )(tdownMin is the minimum downtime of 

thermal generating unit at 
tht  hour; ),( tiTon  is duration at which thermal generating unit i  has been on at 

tht  hour; 

)(iRU and )(iRD are the ramp up and down limit of the unit i . These multi-objective EED problems are solved by the 

hybrid IFOA and ANN approach. Both the IFOA and ANN approaches are clearly depicted in the section beneath.   

IV. HYBRID IFOA AND ANN APPROACH FOR EED PROBLEM 

 

To eliminate the EED problems, the proposed work utilized the IFOA and ANN hybrid approach. Here, the IFOA is used 

to optimize the combination of generation. Here, the crossover and mutation are used to modify the searching behavior of 

the fruit fly swarm. ANN will be used to predict the uncertainty events of wind power. The clear description of the 

proposed technique is illustrated in the following section.  

 

A. IFOA for Combination of Generation Optimization  

The IFOA is a novel method for searching global optimization. It originated from the research on food hunting behaviors 

of fruit fly swarm. The fruit fly is an excellent food hunter with sharp vision [31]. In IFOA, to better balance exploitation 

and exploration, the parallel search is adopted. In addition, aiming to make full use of swarm intelligence, the searching 

behavior of the fruit fly is modified by using the efficient neighborhood search functions like crossover and mutation to 

add communication among swarms in IFOA. In light of the wind power uncertainty, the IFOA is optimizing the 

combination of the thermal generators. By the probability occurrence of wind power and production cost of thermal 

units, the multi-objective function is formed. The IFOA strategy is examined beneath. 

 

B. Steps of IFOA 

 

Step-1: Initialization of fruit fly swarm location 

Initialize the economic and emission coefficients, power limits of generators, wind power at an instant time and load 

demand. The random generation of power value combination is initialized as randomP . The randomly generated position of 

fruit fly can be represented as,  

 

LLHrandomPrandom  )(                                                                                                                                         (16) 

 

Where, H and L are the higher and lower bounds respectively, random is the random numbers uniformly generated in the 

range of 0-1.  

Step-2: Start loop: Set Generation = 1 

Perform operations on randomly generated population vector to get best population vector. Operations to be performed 

are listed below. 

Step-3: Osphresis foraging phase 

Minimizing the power variation of the thermal generation unit is the objective function of the proposed method and this 

can be done in the foraging phase. The following function indicates the objective function of the proposed technique. 

  

 MFMinFunctionFitness                                                                                                                                       (17) 

 

Where,  MF  the multi-objective function is formulated for the economic emission dispatch problem of the thermal 

generating unit. Based on the balanced constraints of the system, the fitness function of the system is calculated. 

 

 

Step-4: Crossover and Mutation 

It is an efficient recombination operator has been used to search swarm food location in certain long range. 

Recombination crossover and mutation generates new swarm locations by using the following crossover and mutation 

equation. 
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chromosome

p

L

M
Mutation                                                                               (19) 

 

Where, dcrossovereGenesN  indicates the number of genes crossover, pM  represents the mutation point and chromosomeL  

indicates the length of the fruit fly. 

Step-5: Vision foraging phase 

In this phase, fruit fly optimization carries a greedy selection procedure. Finding the best food source with the lowest 

fitness was given by, 

 

nmFX mbest ,...,2,1),arg(min 
                                            

(20) 

 

If bestX  is better than the current fruit fly swarm location, the fly will replace the new position. Otherwise, swarm 

location will not change. 

Step-6: Stopping criteria  

Stop the process, if the maximum number of generations is reached. Otherwise, go to step 2 and repeat the process up to 

the specified maximum number of generations. Here we set the maximum of generations is 100. 

 

C. ANN for Wind Power Generation Prediction Process 

To optimize the wind speed and to predict the best speed factor of the wind, the ANN is utilized. Wind speed is taken as 

the input of the network and the wind probability is the output of the network. During the learning process, the non-linear 

function of the input is outputted and is controlled by weights which are computed. The ANN is used to capture the 

uncertainty events of wind power to the system ensures the high utilization of wind power. Therefore, a solution of the 

proposed optimization approach is minimized the total cost by using the backpropagation learning algorithm [32].  

 

Backpropagation learning algorithm steps 

Step 1: Initialization of the input layer, hidden layer and output layer weights of the neural network, i.e., day )(D , 

hour )(H , wind speed ),( tjSWT  and wind power generation ),( tjPWT .  

Step 2: Learning the network according to the input and the corresponding target. 

Step 3: Calculate the back propagation error of the target kWTWTWT tjPandtjPtjP ),(),(,),( 21 . 
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Where,  
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tarNN

kWT tjP is the network target of the thk node and 
)(

),(
outNN

kWT tjP  is the current output of the network.  

Step 4: The current output of the network is determined by using the following equation, 
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Where, 1 , 2  and k are the bias function of the node kand2,1  respectively. 
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Step 5: The new weights of each neuron of the network are updated by www oldnew  . Here, neww  is a new weight, 

oldw  is the previous weight and w  is the change of weight of each output. The change of weight is determined as 

follows: 

Where,  is the learning rate (0.2 to 0.5).  

Step 6: Repeat the above steps until the errorBP gets minimized 1.0errorBP .  

Once the neural network training process is completed, the network is trained well for the identifying ),( tjP NN
WT .  
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Fig. 1 Flowchart of the Proposed IFOA-ANN Approach 

V. RESULTS AND DISCUSSIONS 

 

In this segment, the proposed technique results are presented and the different existing algorithms are compared with the 

proposed method. The comparison of the proposed with the existing techniques has been implemented in the 

MATLAB/simulation working stage in order to show the effectiveness of the proposed approach [33]. Individually fuel 

cost and emission objectives are minimized by utilizing the proposed strategy. To solve the optimization by with and 

without using wind power generation for 24 hours, a six-unit generating system is taken and their results are compared 

with different techniques.  
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TABLE 1 

LOAD DEMAND, FUEL AND EMISSION COST OF 6 UNIT SYSTEM FOR DIFFERENT HOURS WITHOUT 

WIND POWER. 

Generators Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Demand 
Fuel Cost 

($) 

Emission Cost 

($) 

PG1(MW) 25.5 104.5 42.5 39.5 128.53 159.57 500 28456.08 114.07 

PG2(MW) 25 35 50 163 126 151 550 29728.71 145.01 

PG3(MW) 105.83 132.83 188.83 200.83 312.83 308.83 1250 65009.73 1077.14 

PG4(MW) 74.83 127.83 187.83 214.83 277.83 316.83 1200 61954.19 1008.07 

PG5(MW) 98 75 197 212 222 296 1100 56546.92 834.28 

PG6(MW) 117.66 110.66 204.66 223.66 278.66 314.66 1250 64913.41 1087.97 

 

The proposed approach for the six-unit generating system is discussed below. In this experiment, a 6 unit generating 

thermal system is contemplated. The generation, fuel cost and emission cost of the 6 generating units for 24 hours is 

computed and contrasted and the differing power demand. Table 1 demonstrates the compressed consequences of the 6 

generator system for six diverse load demands like 500, 550, 1250, 1200, 1100 and 1250 at five distinct hours. The 

outcomes are acquired by the proposed technique without utilizing the wind power generation and the relating fuel cost 

and emission costs are examined. Generation and the relating fuel cost, and emission cost are examined. Also, Table 2 

demonstrates the after-effects of the 6 generator systems for six diverse load demands at five unique hours by utilizing 

the wind power generation. Table 1 and 2 obviously demonstrates that the fuel cost and emission cost of the 6 generator 

system give better outcome while fulfilling the generator's yield requirements. 

 

TABLE 2 

 GENERATION, LOAD DEMAND, FUEL AND EMISSION COST OF 6 UNIT SYSTEM FOR DIFFERENT HOURS 

WITH WIND POWER 

 

Generator 
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 

Wind 

Power 
Demand 

Fuel 

Cost ($) 

Emission 

Cost ($) 

PG1(MW) 40.54 15.54 36.54 42.54 128.53 148.54 77.70 500 23800.55 46.63 

PG2(MW) 47.27 18.27 102.27 58.27 126.27 136.27 61.35 550 26758.37 62.75 

PG3(MW) 50.01 109.01 157.01 217.01 296.01 316.01 104.90 1250 58584.95 948.42 

PG4(MW) 105.50 108.50 157.50 221.50 233.50 263.50 109.97 1200 56726.63 779.82 

PG5(MW) 29.37 71.37 170.37 139.37 287.37 286.37 115.72 1100 49964.43 684.02 

PG6(MW) 80.79 115.79 139.79 182.79 302.79 323.79 104.24 1250 58972.13 917.89 

 
Fig. 2 Fuel Cost Comparison With Wind Power (a) Fruit Fly (b) GA (c) Proposed IFOA (d) Comparison of the fruit fly, 

GA, and IFOA 

 

Figure 2 demonstrates the fuel cost of the proposed IFOA method with wind power generation system which is compared 

with the existing methods such as Fruit Fly Optimization Algorithm (FOA) [34] and the Genetic Algorithm (GA) [35]. 

The fuel cost union diagram of 6 unit generating system in terms of emphases are clearly depicted in that figure. Here, 
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the subplot (a) illustrates the fuel cost of the FOA, subplot (b) illustrates the fuel cost of the GA, and subplot (c) 

illustrates the fuel cost of the IFOA. The comparison results of all the FOA, GA,  and the IFOA is illustrated in subplot 

(d). the proposed IFOA method has the less fuel cost when compared with the existing FOA, and the GA algorithm. The 

fuel cost of the wind power system is varied with respect to the iteration range. In the FOA algorithm, the fuel cost is 

1.6×10
6
 at the 0

th
 level iteration and in the 30

th
 iteration, the cost is reduced (1×10

6
) and it goes constantly till the end of 

the operation. In the GA algorithm, the fuel cost is 1.8×10
6
 at the 0

th
 level iteration and in the 34

th
 iteration, the cost is 

reduced (1×10
6
) and it goes constantly till the end of the operation. In the proposed IFOA algorithm, the fuel cost is 

1.45×10
6
 at the 0

th
 level iteration and in the 20

th
 iteration, the cost is reduced (1×10

6
) and it goes constantly till the end of 

the operation.             

Fig 3 demonstrates the emission cost of the proposed IFOA method with wind power generation system which is 

compared with the existing methods such as Fruit Fly Optimization Algorithm (FOA) and the Genetic Algorithm (GA). 

The emission cost union diagram of 6 unit generating system in terms of emphases are clearly depicted in that figure. 

Here, the subplot (a) illustrates the emission cost of the FOA, subplot (b) illustrates the emission cost of the GA, and 

subplot (c) illustrates the emission cost of the IFOA. The comparison results of all the FOA, GA,  and the IFOA is 

illustrated in subplot (d). the proposed IFOA method has the less emission cost when compared with the existing FOA, 

and the GA algorithm. The emission cost of the wind power system is varied with respect to the iteration range. In the 

FOA algorithm, the emission cost is 1.32×10
4
 at the 0

th
 level iteration and in the 30

th
 iteration, the cost is reduced 

(1.13×10
4
) and it goes constantly till the end of the operation. In the GA algorithm, the emission cost is 1.42×10

4
 at the 

0
th

 level iteration and in the 34
th

 iteration, the cost is reduced (1.15×10
4
) and it goes constant till the end of the operation. 

In the proposed IFOA algorithm, the emission cost is 1.18×10
4
 at the 0

th
 level iteration and in the 24

th
 iteration, the cost is 

reduced (1.07×10
4
) and it goes constant till the end of the operation. 

 

 
Fig. 3 Emission Cost Comparison with Wind Power (a) Fruit Fly (b) GA (c) Proposed IFOA (d) Comparison of the fruit 

fly, GA, and IFOA 

 

TABLE 3 

 COMPARISON OF FUEL COST AND EMISSION COST WITHOUT WIND POWER 

Without Wind Fuel Cost 

Method Mean x 10
6
 Median x 10

4
 Std.Dev x 10

6
 

IFOA 1.1356 1.3613 1.1493 

Fruit fly 1.1371 1.3872 1.1510 

GA 1.1383 1.3871 1.1522 

Without Wind Emission Cost 

IFOA 1.0080 1.0707 1.0187 

Fruit fly 1.0241 1.1281 1.0354 

GA 1.0339 1.1477 1.0453 
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TABLE 4 

 COMPARISON OF FUEL COST AND EMISSION COST WITH WIND POWER 

With Wind Fuel Cost 

Method Mean x 10
6
 Median x 10

4
 Std.Dev x 10

5
 

IFOA 1.0550 1.0080 1.1003 

Fruit fly 1.1113 1.0241 1.6247 

GA 1.1590 1.0339 2.2987 

With Wind Emission Cost 

IFOA 1.0839 1.0707 2.9120 

Fruit fly 1.1572 1.1281 5.4243 

GA 1.1847 1.1477 6.9123 

 

Table 3 delineates statistical comparison amongst proposed and diverse calculations for 6-generating units in terms of 

mean, median, the standard deviation of the fuel, and emission cost without wind generation system which are related 

with the 6 generator power system. Likewise, Table 4 delineates the statistical comparison amongst proposed and diverse 

calculations for 6-generating units in terms of mean, median, the standard deviation of the fuel, and emission cost with 

wind generation system which are related with the 6 generator power system. The mean, median and the standard 

deviations of the proposed IFOA method is compared with the existing methods such as FOA and GA. It obviously 

demonstrates that the proposed technique gives lesser estimations of fuel and emission cost for both with and without 

utilizing wind power generation when contrasted and the different calculations. The statistical comparison amongst 

proposed and diverse calculations for 6-generating units in terms of mean, median, standard deviation. When compared 

with the existing methods, the proposed IFOA method has a better mean, median, and the standard deviation values.  

VI. CONCLUSIONS  

 

In this paper, for deciding the EED issue of the thermal-wind unit, IFOA with AI method is proposed. At first, the issue 

has been systemized as the multi-objective optimization with clashing fuel cost and environmental emission objectives. 

For limiting the fuel and emission cost of the thermal system with the anticipated wind speed factor, the proposed cross 

breed strategy is used. The proposed strategy is realized in MATLAB working platform and the results are analyzed with 

thinking about generation units and it is contrasted and different solution procedures. The performances of the proposed 

strategy are explored on six generating units of the thermal system with and without utilizing wind power generation. 

The statistical analysis of six generating units of thermal system is contrasted and different algorithm concerning best 

cost, worst cost, mean, median and standard deviations separately. The examination demonstrates that the proposed 

procedure is more successful than the other solution methods for tackling the EED issue notwithstanding for large-scale 

power systems. Likewise, the proposed system yields an aggressive execution as far as the solution. Along these lines, 

the proposed strategy is a promising procedure for deciding confounded issues and gives off an impression of being a 

strong and effective technique for taking care of multi-objective optimization issues in power system. 
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