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Abstract - The work is related to dynamical nature of a discrete time three species prey-predator-scavenger 

model in the presence of quadratic harvesting on predator population. We investigate existence and 

parametric conditions for local stability of positive equilibrium point of this model. Moreover, it is also 

proved that the system under goes Neimark-Sacker (NS) and Period-Doubling bifurcation (PDB) at certain 

parametric values for positive equilibrium point with the help of an explicit criterion for NS and PDB. The 

trajectories and phase plane diagrams are plotted for biologically meaningful sets of parameter values. 

Also bifurcation diagram are shown for selected range of growth 

parameter. Finally, a numerical example is provided for justifying the validity of the theoretical analysis 

and visualizes the model with and without harvesting on predator.   
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1. INTRODUCTION 
 

Mathematical models are of importance in examining the complex dynamics of interacting populations. Lotka and 

Volterra introduced the first mathematical model which described the interaction of populations [2]. Since then several 

models appeared by including more species and many types of functional responses [9, 6] making the classical model 

more realistic. We consider three species model which includes prey, predator and scavengers in an ecosystem. 

Scavengers play an important role in food web by consuming decaying dead animal. These species are capable of 

breaking down the organic material, which includes bodies of dead animals, and recycling it into the ecosystems as 

nutrients [3, 4, 1].  

2. EQUILIBRIA OF THE DISCRETE MODEL 
 

Consider the following discrete time predator-prey-scavenger model: 
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where r is the growth rate associated with prey x , &  are the natural death rate of scavenger z & predator y , a  is the 

rate of change in the scavenger involving a prey population,  is the rate of change in the scavenger involving a predator. 

When the prey-predator-scavenger system (1) subject to the quadratic harvesting of predator, the model becomes: 
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(2)  

Here and  are both carrying capacities of scavenger and predator respectively but the term 2y and 2z are quadratic 

harvesting of scavenger and predator population. The above system (2) has five equilibrium points: (i) The trivial 

equilibrium 0 (0,0,0)E  and the predator free equilibrium 1

1
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, which are always feasible. (ii) The boundary 
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, which is feasible when 1r  . (iii) The second 

boundary equilibrium in xz -plane is given by ˆ ˆ( ,0, ) ,0,xz
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3. DYNAMICAL NATURE OF THE MODEL 

This section discusses the local behavior of the system (2) in presence of quadratic harvesting around each equilibrium 

point. The variational matrix of system (2) is 
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3.1. Stability of
0E : The eigenvalues of the variational matrix J for the system evaluated at the trivial point 

0E are 

1 2  , 
2 1   and 

3 1   . Thus 
0E  is saddle when 

1| | 1  , 0 2  and 0 2  . 
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: The eigenvalues of J for the system evaluated at the axial equilibrium point 
1E are 
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3.3. Stability of  , ,0xyE x y : The eigenvalues of the variational matrix J evaluated at the first boundary 

equilibrium point 
xyE are 
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3.4. Stability of ˆ ˆ( ,0, )xzE x z : The eigenvalues of the variational matrix J evaluated at the second boundary 

equilibrium point xzE are 1
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asymptotically stable when ˆ ˆ2x x   and ˆˆ( 1) 0.z ax      The equilibrium point xzE  becomes locally unstable if 

ˆ2 x    and ˆˆ( 1) 0.z ax     

4. LOCAL STABILITY AND BIFURCATION 

Now, we discuss the stability and the conditions for the existence of NSB and PDB at the positive equilibrium point E_ 

of the scavenger system (2). Recently, many authors have discussed similar type of bifurcation for discrete time 

dynamical systems. The variational matrix (3) at  * * * *, ,E x y z has the form 

 
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The characteristic equation of *( )J E  is 3 2

1 2 3 0S S S                                                                                  (4)  

where 1 1 2 3S      , 
2 1 2 2 3 3 1 * * * *S ax z x y          , 3 1 2 3 3 * * * * * 2 * *S x y x y z ax z                      (5)                                          

such that 1 * * *2( 1)rx y z     ,
 2 * *2 1x y      and 3 * * *2 1ax y z        . By Routh-Hurwitz criterion, the 

positive equilibrium point 
*E   is locally asymptotically stable if and only if

1 0S  , 3 0S   

and      2 2 2
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4.1. Neimark-Sacker Bifurcation: To study the NSB of the system (2), we need the explicit criterion of Hopf 

bifurcation [7] is useful [10]. 

Theorem 1: The positive equilibrium point 
*E of the system (2) undergoes NSB for ( )a r      , 

( ) (1 )a r r         
 

if the following conditions hold:  2 3 1 31 0S S S S    ,  2 3 1 31 0S S S S    , 

1 2 31 0S S S    and 
1 2 31 0S S S    , where 

1S , 2S  and 3S  are given in (5). 

Proof: For three dimensional system (n = 3) [5], we have the characteristic polynomial (4) of system (2) evaluated at the 

positive equilibrium point 
*E . Thus we obtain the following equalities and inequalities:  2 2 3 1 3( ) 1 0r S S S S      , 

 2 2 3 1 3( ) 1 0r S S S S      , , 
1 2 3(1) 1 0rP S S S     and 

3

1 2 3( 1) ( 1) 1 0rP S S S       . 

4.2. Period-Doubling Bifurcation: An explicit critical criterion for the existence of PDB is proposed for higher 

dimensional discrete time systems [8]. 
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Theorem 2: The positive equilibrium point 
*E  of the system (2) undergoes PDB for ( )a r      , 

( ) (1 )a r r         
 

if the following conditions hold:  2 3 1 31 0S S S S    ,  2 3 1 31 0S S S S    , 

21 0S  , 
1 2 31 0S S S   

 
and 

1 2 31 0S S S     , where 
1S , 

2S  and 
3S  are given in (5). 

 

Proof: three dimensional system (n = 3) [5], we have the characteristic polynomial (4) of system (2) evaluated at the 

positive equilibrium point
*E . Then we obtain the following equalities and inequalities:  2 2 3 1 3( ) 1 0r S S S S      , 

 2 2 3 1 3( ) 1 0r S S S S      , 1 2( ) 1r S   ,
1 2 3(1) 1 0rP S S S    

 
and 

1 2 3( 1) 1 0rP S S S       . 

 

5. NUMERICAL STUDY 

 

The purpose of this section is to present phase trajectories, limit cycles and bifurcation diagrams for growth parameter r  

and harvesting parameter  to illustrate the results obtained in the previous section. From the numerical results, in Figure 

(1) we use some parameters values like 2.271r  , 0.049  , 0.035  , 0.0629a  , 2.76  , 0.637  , 1.491   

with ( , , ) (0.4,0.3,0.2)x y z  . The positive equilibrium point is
* (0.064,0.448,0.404)E  and the eigenvalues are 

 
Figure 1: The trajectory of system (2) converges to

*E . 

1 0.6692   , 2 0.9282  and 3 0.4516  so that 1,2,3| | 1  which ensures stability of the system. In Figure (1), we 

observe that time plot is oscillatory but converges. Phase portrait spirals into stable equilibrium of the model (2). In this 

case the positive equilibrium point 
*E is a sink and the system (2) is locally asymptotically stable.  

 
Figure 2: The trajectory of system (2) is unstable. 

Whereas with 2.29r  , 0.069  , 0.41a  , 1.5173  , 0.391  and keeping all other parameter values are same. 

Eigenvalues are 
1 1.3833  , 

2,3 0.9190 0.0796i   so that 1| | 1  and 2,3| | 0.9224 1   . In this case, the coexistence 

equilibrium point 
*E is a saddle and the system (2) is unstable. 

Figures (3) and (4) describe the approximate solutions x and y depend on the intrinsic growth parameter r  are displayed 

in the figures below.  We consider the parameter values are 0.049  , 0.035  , 0.0622a  , 2.176  , 0.637  , 

1.371   with ( , , ) (0.4,0.3,0.2)x y z  . Other parameters will be (a) 2.28r  , (b) 2.32r  , (c) 2.34r  , and (d) 

2.36r  . While with 0.099  , 0  , 0.699a  , 2.017  , 1.296  , 0   and the initial conditions are 

( , , ) (0.2,0.3,0.4)x y z  . Other parameters will be (a) 2.181r  , (b) 2.51r  , (c) 2.61r  , and (d) 2.92r  . Figure (3) 



 

International Journal of Technical Innovation in Modern Engineering & Science (IJTIMES) 
Volume 4, Issue 09, September-2018, e-ISSN: 2455-2585, Impact Factor: 5.22 (SJIF-2017) 

 

IJTIMES-2018@All rights reserved   865 

and (4) shows the phase trajectories of the system (2) and (1) involving both presence and absence of quadratic 

harvesting according to chosen parameter values and for various values of growth parameter r . 

 

 

 
Figure 3: The trajectories of system (2) moves from unstable to stable in the positive xy - octant. 

 

 
Figure 4: Trajectories of system (1) moving from unstable to stable in the positive xy - plane. 
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We can see that, whenever the value of r  increases, then 
*E moves from destabilized to stabilized and the trajectories 

spirals slowly inwards but does not approach a point. Finally settles down as a limit cycles (see Figure 3(a)-3(c), 4(a)-

4(c)). When r
 
increases at certain values, for example 2.36r  and 2.92r  , the trajectories spirals much faster than 

approaches to an asymptotically stable of the system (1) and (2) (see Figure 3(d) & 4(d)). The bifurcation diagrams for 

growth rate r
 
of the system (2) involving a presence of quadratic harvesting with 0.4x  , 0.3y  & 0.2z  as above 

and the selected parameter values 1.39  , 0.79  , 2.89a  , 0.77  , 0.75  , 0.42  , [1,1.4]r with step size 

0.001r  in the ( )r x plane and the ( )r z plane are given in Figure (5). We observe that the bifurcation diagrams of 

an equilibrium point 
xzE for larger value of growth rate r  of the prey and scavenger populations there is no possibility of 

chaotic dynamics of the above system(2). But for smaller value of r  the systems becomes chaotic.  

 
Figure 5: Bifurcation diagram for prey & Scavenger populations with growth rate parameter r of system (2).  

 

The phase portraits which are associated with Figure 5(a - b) are disposed in Figure (6), which clearly depicts the process 

of how a smooth invariant circle bifurcates from the stable (0.342,0,0.568) . When 1.26r   there appears a  

 
Figure 6: Phase portraits for various values of r corresponding to Figure 5.  

circular curve enclosing the equilibrium point xzE , and its radius becomes larger with respect to the growth of r . When 

r increases at certain value, for example at 1.15r  , the circle disappears and quasi-periodic orbits lead to chaos. 

 

5.1. SENSITIVE DEPENDENCE ON INITIAL VALUES: The sensitivity to initial conditions is a characteristic of chaos. 

In order to demonstrate the sensitivity to initial values of the scavenger system (2), we compute four orbits for both prey 
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and scavenger populations with the initial values
0 0 0( , , )x y z , 

0 0 0( 0.0001, , )x y z and  
0 0 0( , , 0.0001)x y z   respectively. 

The compositional results are shown in Figure (7) & (8). From these figures it is clearly observe that, at the beginning, 

the time plots are indistinguishable but after a number of iterations, the difference between them builds up rapidly. 

 
Figure 7: Time plots 

nx corresponding to the initial conditions (0.4,0.3,0.2)&(0.4001,0.3,0.2) .  

 
Figure 8: Time plots 

nz corresponding to the initial conditions (0.4,0.3,0.2)&(0.4,0.3,0.2001) .  

 

In addition, Figure (8) and (9) shows that sensitive dependence on initial conditions, &x z -coordinates of the four orbits, 

for system (2), is plotted against the time with the parameter constellation 1.067r  , 1.39  , 0.79  , 2.89a  , 

0.77  , 0.75  , 0.42  . The &x z -coordinates of initial conditions differ by 0.0001 and the other coordinates are 

kept equal. 
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