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Abstract— We proposed to study the existence of periodic orbits of the first kind in the CR4BP when the second
primary is an Oblate spheroid, the third primary is a triaxial rigid body and the fourth primary is of comparatively
smaller mass placed at triangular libration point. By applying the model of Hassan [1,2] and Payal [3], we examine
the existence of periodic orbits with the technique of Choudhary [4] and conditions of Duboshin [5] with different
parametric values and found satisfied.
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I.  INTRODUCTION

Giacaglia [6] applied the method of analytic continuation to examine the existence of periodic orbits of collision of the
first kind in the Circular Restricted Four—body Problem (CR3BP). Bhatnagar [7] generalized the problem in elliptic case.
Further Bhatnagar [8] extended the work of Giacaglia [6] in the Circular Restricted Four—body Problem (CR4BP) by
considering three primaries at the vertices of an equilateral triangle. In last three decades a series of works have been
performed by different authors with different perturbations in the circular and elliptic restricted three-body and four-body
problem but nobody established the proper mathematical model of the Restricted Four-body Problem (R4BP).

Recently Ceccaroni and Biggs [9] studied the autonomous coplanar CR4BP with an extension to low-thrust propulsion
for application to the future science mission. In their problem they also studied the stability region of the artificial and
natural equilibrium points in the Sun-Jupiter Trojan Asteroid-Spacecraft system. Using the concept of Ceccaroni and
Biggs [9] and the method of Hassan [1,2], we have proposed to study the existence of periodic orbits of the first kind in
the autonomous restricted four—body problem (R4BP) by considering the second primary as an oblate spheroid and third
primary as a triaxial rigid body.

Il. EQUATIONS OF MOTION OF THE INFINITESIMAL MASS
Let P (i=123) be the three primaries of masses m, (j=1,2,3) respectively, where m, >m, >m,. The problem is
the restricted four-body problem so the fourth body P of infinitesimal mass m is assumed to be so small that it can’t
influence the motion of the primaries but the motion of P(m) is influenced by them. In addition, we assumed that the

mass m, (mass of the third primary placed at L, of the R3BP) is small enough so that it can’t influence the motion of the
two dominating primaries B, and P, but can influence the motion of the infinitesimal body P(m) .

Thus, the centre of mass (i.e. the bary-centre) i.e. the centre of rotation of the system remains at the bary-centre O of
the two primaries P, and P, . Also, all the primaries B, P, and P, are moving in the same plane of motion in different

circular orbits of radii OR,OP, and OP, respectively around the bary-centre O with the same angular velocity & .
Considering (O, XY) as an inertial frame in such a way that the XY — plane coincides with the plane of motion of the
primaries and origin coincides with O. Initially let the principal axes of the second primary P, are parallel to the
synodic axes (O, xy) and its axis of symmetry is perpendicular to the plane of motion. Since the primaries are revolving

without rotation about O with the same angular velocity as that of the synodic axes hence, the principal axes of P, will
remain parallel to the co-ordinate axes throughout the motion.
Let at any time t, P,(&,0)and P, (&,,0) be the positions of two dominating primaries on the x—axis of the rotating

(synodic) co-ordinate system and P3(§3,773) be the third primary placed at the equilibrium point L, of B andP,. Let

i, T, and T, be the displacements of P, P, and P, relativeto P and F be the position vector of P(x,y), then

=(x—&)i+yi=PRP, F=(x-&)i+yi=RP, }

)

1)

=(x=&)i+y(y-m)i=RP, F = xi +yj = OP.
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Fig. 1: Configuration of CR4BP when Second Primary is an Oblate Spheroid and Third Primary is a Triaxial Rigid body
Let F,F, and F, be the gravitational forces exerted by the primaries B, P, and P, respectively on the infinitesimal

mass m at P(x,y), then
= Gmm P
Fo=——32{(x=&)i+vi} @

r13
Let by,b, and b, be the lengths of the semi-axes of the second primary P, (£&,,0) then the gravitational force exerted by

P,(&,,0) on P(x,y) is given by McCuskey [10]

Gmm, . 3Gmm,o; .,
f, — f

F,=-
z AT A
2 2
-b
where o, = 22 ) , R is the dimensional distances between the main primaries B, and P, .
Here

; _ (X_‘fz)' +Yj

f = unit vector along P,P so f =

4 I
~ - 3(x— R s
.'.F=—Gmm2HX 3§2+ (Xzéz)al}i+{%+3ggl}j}
2 2 2 2

Let c,,c,,c, be the semi-axes of the third primary at P,(&,,7,) =L, then gravitational force exerted by P,(&,7;) o

2

P(x,y) is given by
- __Gmm, . 3Gmm, [Zcf—cj—c,f]f , 156mm, ¢} —c; (y=m)'F, where 7, (x=E)T+(y—115) ]
3
r3

®

n

F,=-
: Pt 2 5R? 2t BR?
2 2 2 2
. . C —C . C,—C
Taking o, =?23, o, = 25R23 : “)
then
= Gmm, ., 3Gmm C oy, 15Gmm, o o 2
== ry 6 2t} (20 )+ 2r? (o102 ) (y—115)
Total gravitational force exerted by the three primaries on the infinitesimal mass at P(x, y) is given by
L. . - m, (x— m, (X — m, (X — 3m,o, (X — 3m, (20, -0, )(x—
F=F+F +F =-Gm 1( 351)_,’_ 2( 352)_,{_ 3( 353)+ 261(5 ézz)_'_ 3( 1 52)( 983)
r r, r 2r, 2r,
15m, (0, -0, ) (x—&) 2 my my m(y-m) 3mo, 3Mm(20,-0,)
- - P42 422, 3 Uy lyy - 5
2r27 (y 773) ri3 r23 r33 2r25 y 2r35 (y 773) ( )
15m3(0'1 O'z) 3| =
- (Y=1) ¢ )
2r] :
18
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The equation of motion of the infinitesimal mass in the gravitational field of the three primaries B, P, and P, is given

by

2 —

m a—!+25?) a—r+a—wxr+a)x(c§xr) =F, (6)
ot ot ot

where

Zr o I - .
—- = Xi + y = relative acceleration,
at2

or . - .
D% r = —nyi +nxj = coriolis acceleration,

, . o0d - ~.
Euler's acceleration = EX r, (as @ = nk is a constant vector)

@x(&xT)=-n’xi —n’yj = centrifugal acceleration.
From Equations (5) and (6), we get

m[(X—Zny—nzx)f+(y+2n>’<—n2y) i]z—Gm“rnl(X;él)+ mz(x—§2)+ mg(x—§3)+ 3myo: (X~ ¢,)

3 3 5
r.:l. r2 r3 2 r-2

+3m3(20'1'—0"2)(X—§3)_15m3(o'i;_:})(X—fa)(y_%)z}f_i_{ my m2y+m (y_773)+3m20'1 y
2

+
5 3
21,

AR r 2r;
3m, (20, - 0,) 15m, (o, - o) s
R B A R E VAR

By equating the coefficients of T and j from both sides, we get the equations of motion of the infinitesimal mass as

_531)+m2(x_§2)+m3(x_§3) 3m 0'1( 53)+3m3(201—02)(x—§3)

X—Zny—nzx:—G{ml(X

r’ r; r, 2r; 2r; -
_15m3(01—0'2)(x—§3)(y_ )2
2r) )
my , my m ,(Y-75) 3myo, 3m3(201 0'2) 15m3(01'—0'z) 3
+2nx—n’y =-G + —1)—————(y— 8
y y= L ra 5 2w VT o (y-m,) 20 (y-m,) (8)
Let V=v,i +Vv,] be the linear velocity of the infinitesimal mass at P(x, y) then
g arJrc?)xr—(i(—ny) +(Y+nX) =Vl +v, ] {as i—nga‘)x}
dt ot ' dt ot
where v, = X—ny,v, = y+nx
*. Kinetic energy of the infinitesimal mass is given by
T =—|v| = (x +y?)+n(xy - xy)+?(x +y?) for unit mass of the infinitesimal body. 9
Where the mean motion of the synodic frame is given by
W =140, +>(20,-0). (10)
. . . oT oT
Let p,and p, be the momenta corresponding to the co-ordinates xand y respectively then p, = X p, = E
X
= p=X-ny=v,and p, =y+nx=Vv,
Thus T :E(pf +p;) (11)

Let V, =(i=1,2,3) be the gravitational potential of the primaries of masses m (i=12,3) at any point outside of
P(x,y), then
V= - Gm, V, = Gm, szol

r , o2
: (12)
_ Gm3_Gm3(201—02) 36m, (o, - )(y—n)z-
¢ r, 2r? 2r’ :
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.". Total potential at any point outside of P(x, y) due to three primaries is given by

\% :ZS:V :_G[ﬂ_i_&_i_%j_szal+3Gm3(01'—0"2) Gm3(20'1'—(7'2).

2
_ _ _ 13
=i Looroo 2r; 2r; (y=mn) 2r} 13)
The Lagrangian of the infinitesimal mass is given by
1 m m, m Gm,o; Gm3(2(71l _Ué) 3Gm, (01 _O_Iz) 2
L=T-V=2(p?+p?)+G| 2+—2+2 |+ —214 - -1,) . 14
Z(p1 pz) [ Loor,oo J 2r? 2r; 2r; (v=) (14)
The Hamiltonian of the infinitesimal body of unit mass is given by
H :sz_L:(p1X+ sz)_L
1 m m, m) Gmo, Gm(20,-0,) 36m(c,-c,) 2
H==(p’+p?)+n(py—p,x)-G| 2+—2+2|-—22— + -
5 (P7P7)+n(py—pox) [ P ] 20 2 e ) (15)

= C = constant.
Assuming x as the mass ratio of m, and ¢ as the mass ratio of m, to the total mass of the dominating primaries

m m .
P and P, then u= 2 _and¢ = 2. Also assuming m, +m, =1 then m, =&, m =1-xandm, =&. From the
+

m, m, +m,
definition of the centre of mass of m andm,, we have m¢é +m,5, =0 which implies & =u&, =pu-1
&= y—%and 7, =§ . Thus the co-ordinates of the three primaries B, P, and P, are (,0),(x#-1,0)and (y—%?]

respectively, which confirms [P,P,|=|P,R,| = P,P,

=1 i.e. RR,PR, isan equilateral triangle of sides of unit length.

Now choosing unit of time in such a way that G =1 and taking x=x, and y =X, , then the reduced Hamiltonian is
given by
1,05, 1-p p & po, 38(0_1'_6'2) 2
H==(p + +n(pXx, — _—— —t——"(y- = C = constant. 16
Z(pl pz) (pl 2 ple) r Lo 2I’23 2I’35 (y 773) (16)
The Hamiltonian — Canonical equations are

h_oH A Mgy (17

dt  op, dt oX;

The energy integral of the infinitesimal mass is

oo oy 1 o0o oy, 1-u u & po 8(20'1'—0-'2) 38(0‘1'—0:2) 2

=X +Y)==n" (X +Y |+ ——+—+—+"—+ - - . 18
2( V) 2 (¢ +¥) rororo2r 2r; 2r; (y=m,) (18)

I1l. REGULARIZATION
In our Hamiltonian given in Equation (16), there are three singularities r, =r, =r, =0, so to examine the existence of

periodic orbits around the first primary, we have to eliminate the singularity r, =0 from the Hamiltonian in Equation
(16). For this, let us define an extended generating function S by

S =(u+af - ) p,+20,,p,, (19)
. . . . . oS oS
where Q, (i =1,2) are momenta associated with new co-ordinates ¢, (i=1,2) and x; =%,Qi e
oS oS
Clearly, x, =— = -g> and X, =— =20,0,. 20
Yo % o, H+0Q —C, 2 o, 0,4, (20)
Q =2(poy+p0,) and Q,=2(p,0G —Pa,). (21)
(7 = (% —u) +% = (o ~2) +407q? = (g2 +02)’
n=g+q, =1+ +2(qf —af), 1 =1+5+(qf —0F )-24/3q,0,. (22)
From Equation (21), we have
1 1
p, = 2_(Q1Q1 _Q2QZ) and p, = _(quz +Q2q1)' (23)
n 2,
1
P+l = (Q+QT). (24)
n
n nu
n( PuX; = ple) = E(quz _qul)_E(quZ +Q2q1)- (25)
1
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The combination of Equations (15), (24) & (25) gives the Hamiltonian H in terms of new variables g;,Q, (i =1 2) as

e o, 1 nu -y u & uo, ¢(20,-0,)
=—(Q +Q; )+=n - - + - r -4 - - °
B (@7 +Q7)+5n(Qe, ~Quk) h (Qa, +Q.a,) C 2 o
(o), ) “
&\ O O.
+1—2[2q1q2__3j =C.
2r3
Let us introduce pseudo time z by the equation
dt=rdz (z=0whent=0). 27
The Canonical equations of motion corresponding to the regularized Hamiltonian K are given by
dg. dQ.
i:% and &_ K (izllz) (28)
dr  0Q dz 6qI
where the regularized Hamiltonian K is given by
K=r(H-C)=0,
_1l 2y, 1 nu HL&n pno; 8[‘1(20'1'—6'2)
g(Ql +Qz)+Enr1(Q1q2_Q2q1)_7(Q1q2+qu1)_(l_ﬂ)_?_z_ 2[’23 - 2[‘33 (29)

3er, (0'1' —0'2) J3
+ 2rs 20,0, RCRE nC =0.

Since & is very-very small in comparison of the masses of the dominating primaries hence Ve € |0, [ , we can take
&= pue, and C=Cy+uC, + °C, + 1°C, +..... . Letus write K =K+ K, =0 then from Equation (29), we have

Ko =3(Q7+Q2) 4 [n(Qg, ~Qu0)~2C,]-1=~4(say), (30)

2
n 1 A B 3
K1 :1_E(Q1Q2 +Q2q1) [C t—t— +i+_3_ (2q1q2 £j :I’

b o2 o 1)
n 1 ¢ o, A 4B J3B
=1—5(Q1q2+Q2q1)—r1{cl+—+—°+—1 +———0/0; -

o2 P re %l ¥ 4r? }
v Efn , 3
where A 25(20'1—0'2),8 25(01—0'2)80.
I\VV. GENERATING SOLUTION
For generating solution, we shall choose K, for our Hamiltonian function, so in order to solve the Hamilton — Jacobi
equation associated with K, let us write Q, =g—(|:1,2) and 1-A=a >0 arbitrary constant. Since t is not
q

involved explicitly in K, hence the Hamilton — Jacobi equation may be written as

2
1{( oW ow 1 ow ow
o == 4 22 g,—-¢— |-2C, |=a. (32)
8[[6%} [aqj } 2 { [ 2 oa, 1aq2J o}

Putting g, = pcose, g, = psing

33
then p° =q +q; =1, and qo:tanl(&J )
G
Now W =W (q,,q,) =W (p,9)
:leﬁ oW COS(B—%.M and Q2 %:ym ne+ 6W00ﬂ (34)
oq, Op op p aq, Ip op p

[awjz [awj (aw} 1 (awj W oW oW
=+ = = and g, — — @, — =——.
o, 0od, op op o, od, op

Thus, the Equation (32) reduces to

1[[6Wj %(ﬂ] }1,){4]%_% } ()
op p -\ op 2 op

This is a partial differential equation of second degree, so by the method of variable separable, the solution of Equation
(35) may be written as
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W =U(p)+2Gg, (36)
where G is an arbitrary constant.

Now introducing a new variable z by r, = p° =z then (;1_2 =2p
o)

WU UV &, du
Top Op dp dz dp pdz

ie, ﬂ:Zpd—U and d—W:ZG. (37)
op dz do
Introducing Equation (37) in Equation (36), we get
1 duy 1 2 1,
=l 2p— | +—(2G)" |+=p°|-n2G-2C,|=«,
2 2(nG+C
(d_U] =—MF(Z)’
dz z

az 2

- +

nG+C, 2(nG+C,)
du JF (2

Thus —— = J2(nG +co)¥ (39)

U(Z,g,a)=ﬂl—2(nG+Co)‘Z[—d‘FZ(z)z (40)

where z, is the smaller root of the equation F(z)=0.

where F(z)=-2? is a quadratic expressionin z. (38)

From Equation (40) we conclude that for general solution, we need only two arbitrary constants assigned as a¢and G .
Therefore, the solution (40) may be regarded as a general solution. Following Giacaglia [6] and Bhatnagar [8], let us
introduce the parameters n,a,e,l by the relations

z,=na(l-e), z,=an(l+e) and z=zcos’ |§+ z,sin’? IE =na(1l-ecosl). (41)

where z, and z, are the other roots of the equation F (Z) =0, a is the semi-major axis, e is the eccentricity and | is the
semi-latus rectum of the elliptic orbit of the infinitesimal mass around the first primary. It may be noted that for
z=12,1=0.

From Equation (41),
z,+2,=2na, z2,=n"a’(1-¢€’), (42)
Since z, and z, are the roots of the equation F (z) =0 hence from Equation (38),

. 2 az G?
ie, 2%+ -
nG+C, 2(nG+C,)

2
 _and zz,--— (43)
nG+C, 2(nG+C,)
From Equations (42) and (43), we have
o

nG+C,’

na’(1-e*)=-

Z,+2,=—

2na =—
GZ
2(nG+C,)’
__ (24 _ (24
2n(nG+C,) n[-2(nG+GC,)]
Introducing a new parameter L by the relation

1
a=L[-2(nG+C,)]? >0, (44)
then a = L >0 (45)
n[-2(nG+C,)]
G2
Also n*a® (1—e2):——,
2(nG+C,)
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) , L2 G*
n°(l-e = ,
( )nz[—Z(nG+CO)] [-2(nG+C,)]
GZ %
—e [1—Fj <l1. (46)
From Equation (38),
GZ
F(z)=-22-—%% . ,
(2) (nG+C,y) 2(nG+Cy)
=n’a’e’ —n*a’e’cos’l,
F(z)=n"a’e’sin’l. 47
The Hamilton-Canonical equation of motion corresponding to the Hamiltonian K, are given by
do oK, do, 0K
dr  oQ,’ dr  aQ,’ (48)
aQ_ &K,  dQ, K,
dr (f?q1 dr aq, |
1
where K, = g(Qf +Q22)+Ep2 [n(Qa,-Q,q,)-2C, |-1.
K, 1. 1, K, 1. 1,
=ZQ +=p°n and —2=>Q,-=p°nqg,
= 20, 4Q1 2p d, 2Q, 4Q2 £ Nnq,
o1 1
Thus 0 :ZQ1+§p2nq2 and Qz p nq, (49)
where (") denote the differentiation with respect tor.
Now p® =g +0; =z,
dp do dg, dz
20— =2 +2
T e T g Tar
= 2pp =2(00 + 00 )= (50)
. . 1.1, 1.1,
But 0,4 +0,49, =G, (ZQ1+§'D nqzj"'qz [ZQz _Ep I’lqu (q1Q1+q2Q2 [usmg Equatlon (49)]
: T dz
Thus 2pp =quiqi =_Zqui =_- (51)
oW oW
Also ZqQ hQ, +,Q, = ql[ ] qz( J
o0 aq,
( oW  sing awj [ oW  cosg awj
= pCOS@| COSp— ———— |+ psing| sinp— +———
op  p 09 op  p Op
= paﬂ = prd—U, [using Equation (34)]
op dz
du du . .
=2p* —=27——, using Equation (37
& & [using Eq (7]
2
=>0qQ =2z (d—U] (52)
Py dz
Also, from Equations (39), (51) and (52)
1 oW : 2 13 dz
Sp—=12pp =2 00, ==Y 0Q —z—_J 2(nG+C,)F(z) =—. (53)
2 8 i=1 2 i=1 dT

From the last relation of Equation (53), we have
dz
= = -2(nG+C,),[F(z)
dz
F(2)

= -2(nG+C,)dr,
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I —\/mjdr where =2, =1=0,z=1,

%o

3jnal sinldl _

lsin| -2(nG+Cy)(7—-1,), [using Equations (41)and (48)]
0

=1=[-2(nG+C )] (t-175),

|_j\/_

Again, from Equation (53)

%% - J2(0G+Cy){F(2)

%q:\/—z (nG+Cy) \/F z

[-2(nG+C, ] )2 (r-1,). (54)

:>z——J— nG +C, \/F

1 z2dz
=dt= - ’
[-2(nG+C,) 2 F(2)
:>_I[dt— 1 ran(1-ecosl)anesinldl
- 1 .
& |:_2(nG+CO )]5 0 anesinl|
t-1 =Ll(l —esinl)  where 1; is a constant. (55)

[—2(ng +G, )]E
Now taking Land G as arbitrary constants in line of oand G and the solutions may be given by the relations
aﬂ 6U ow ou

o J'\/_ and £=£+2¢):g.

From Equation (40),

U(z,G,L)=[-2(nG +co)]% de_zz

Differentiating partially with respect to G, we get

dz
aG an\/— (nG+C,) )

= J%\/—Z(nG+CO)F(z)%,

z

(56)

_ nvL? —G?sinl ‘/_,[

2(nG+C,)
a_U:n\/I:Z—G2 sinl
oG 2(n(§+C )
where f_\ll e j
1 ecosl

From Equation (56),

1 ecosl

—f,

(e=1). (57)

. g=2pe WE-Glsinl ¢ (58)

1 L2 -G? . 1 nL .
=¢p==(g+f)———sinl and =—g———-sinl 59
p=5lg+1) 4(nG+C,) ?=%297ac, 59

where (e #1,G =0, f ¢O),(e=1(§=0,f =0).
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Now let us find the value of K, interms of I,g,L,G . For this, we have

:l(le +Q22)+%,02 |:n(qu2 —qul)—ZCOJ—l,

@ bl

1

= K, =L[-2(nG+C,) 2. (60)

Therefore, for the problem generated by the Hamiltonian K, the equations of motion are

Ko Ko
a9 =0= L =constant = L, 46 _ &K, =0= G =constant = g,
dr al dr ag
dl Ky
o =[-2(nG+C )] = (say)  =l=nr+l, (61)
dg aK L
e T = (say) = g=n,7+0,
[ -2(nG+C )]

Further we are to express g; and Q, (i :LZ) in terms of canonical elements 1,g,L,G . From Equation (34),

Q= W = cow%—s'n—w% = cosw2pd—u— sing w _1 [cos 2p° d—U—sin (pZG} = E[coswzd—U—Gsin go},
g op p Op dz P 6(0 P dz P dz

=ii[{—2(nG+Co)};mcosw Gsm¢7} T{ {—2(nG+C0)}2esinICOSgo—Gsingo},

e, Q=2 eLsinlcosg—Gsing .

+,/na(1—ecosl)
Thus,

2|eLsinlcosp—Gsin 2[eLsinlcos @+ Gsin

lei [ 4 ?’]’ szi [ 4 (0],

na(1—ecosl) na(1-ecosl) (62)

1 1

0, =+[ na(1-ecosl) |2 cos o, q, ==[na(1-ecosl)]zsing,

where ¢ is given by the first equation of (59). Where e=1,G=0,f =0, then the variables ¢,,Q, (i =1, 2) can be
expressed in terms of canonical elements (I,g, L,G) as

g, = ++/2an SiﬂIECOSgo, g, = ++/2ansin lsin O,

(63)

4L | 4L I
Q= +\/_cos Cos @, Q, = +J_cos sin g,
where ¢ is given by the second equation of (59).
The original synodic cartesian co-ordinates in a uniformly rotating (synodic) system are obtained from the Equations

(20) and (23) when =0,

X =05 — 0, X, = 20,0, }
1 1 (64)
_E(qul_QZqZ)' P, ZZ(qul_quz)
The sidereal cartesian co-ordinates are obtained by considering the transformation
X, =X, cosnt—x, sinnt, X, =X, sinnt +x, cosnt, (65)
X, = p,cosnt - p, sinnt, X, = p,sinnt + p, cosnt,

where t is given by the Equation (55).
Now let us express K, in terms of the canonical elements 1,g,L,G . From Equation (31),
Lo A _4Bgq 3Bgg, 3B }

n 1 ¢
K,=1-— + -n|C+=+=2 :
1 =1-2(Q0, +Q.4,) 1{ v R

Now,
oW sing oW

oW coswaﬂ}
op  p Op

+ pCOS | Sinp— ,
} { o p 09

ow ow
Qu4, +Q,q, = psin (paﬂ)coswa = psing| cosp—

1 2
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= p(zﬂsin 2(o+aaﬂcos 20 = 2\/—2(nG +C,)F(z)sin 2 +2G cos 2, [using Equation (34) and (53)]
P 4

1
= 2ane[—2(nG +C, )]5 esinlsin 2¢ + 2G cos ¢ = 2eLsin | sin 2¢ + 2G cos 2¢, [using Equation (47)]
Q,0, +Q,q, = 2[eLsinlsin 29+ 2G cos 2¢],

g(qu2 +Q,0,) = n[eLsinlsin 2¢+ 2G cos 2¢],

2
42q2 = p? cos® pp*sin® p = p* (sinpcos p)’ = ZIsin2 20 and @, :ésin 2¢.
Thus
: Cnzai2 .
K, =1-n(eLsinlsin2p+Gcos2¢p) -z C1+i+i+i13+%—£—82 S|5n 2¢7+J§st;n2(p : (66)
r, , 2r, 1, A4n r 2r,

where 1, =na(l-ecosl)=z, r?=1+22+2zc0s2p, r?=1+2%+2c0s2p—~3zsin2¢ . where a is given by Equation
(45), e is given by Equation (46) and ¢ is given by the first equation of (58).

By neglecting the higher order terms of e, let the co-efficient of 4 be denoted by R then the complete Hamiltonian
in terms of canonical variables I,g,L,G is given by

1
K=L[-2(nG+C,) ]z -1+ uR.
.. The equations of motion for the complete Hamiltonian are

dL _dK _ R dG _dK _ R
dz _d “ar dz _dg a9’
d - dK I 4R d dK nL R (67)
EZ—I:—[—Z(nG‘FCO):IZ_,UI, d_?':_EZ —1_’”5
[—2(nG+CO)]2
where

R=1-n(eLsinlsin2¢p+Gcos2¢p)

1 ¢ o, Ba’n?(l-2ecosl)sin?2p A 3B +/3Ban(l-ecosl)sin2g |.
-2|G+—+—+——~— s +— 5 :
r, r 2 r, ry Ar 2r,
The Equation (67) forms the basis of a general perturbation theory for the problem in question. The solution given in
Equations (62) and (63) are periodic if 1 and g have commensurable frequencies that is, if
m 2|nG +C0| _p
1, L q
where pandq are integers.

: (68)

The periods of q;,Q; are Ll and hid , S0 that in case of commensurability, the period of the solution is dzp and 47q .
77| ’79 77| 779

V. EXISTENCE OF PERIODIC ORBITS
Here we shall follow the method used by Choudhary [4] to prove the existence of periodic orbits when 0. When
1 =0, the Equations (67) become

aw_ok g 96 _2%, _,,

dz o de o9

dl oK H dg oK nL (69)
a:—a—L"z—[—Z(nGJrCO)}? =m(0), d_i:_ OGO :—12772(0)’ say

[-2(nG+C,) 2

Let x, =L, x,=G, y,=landy, =g then

dx, _ dx, dy, dy,
L2 -0 = [

dr dr dr ?71(0) dr ’72(0)
Thus, the Equation (69) can be written as

dx;. dy..
o d 2Zti=pn

T an dr 77'(0)
=% =a,y=n(0)r+a, (i=12) (70)

These are generating solutions of the two-body problem. Here a,,7, are constants given by
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m(0)= {—%}X o (0)= [_ 220 } (71)
The generating sollu;ions will be periodic wi;h Zthe period z, if

X (z5)—x(0)=0,

Yi(zo)-vi(0)=m (0)r=2mx (i=12) }

Here «; (i=1,2) are integers, so that 7, (0) are commensurable.

Let the general solution in the neighbourhood of the generating solution be periodic with the period
7, + o, :(1+ a)z'o, « is negligible quantity of the order of 4 . Let us introduce new independent variable ¢ by the

(72)

equation ¢ = 1L The period of the general solution will be ¢, +ag, = (1+a)g, = (1+ a)lr =17, which is same as
+a ta

the period of the generating solution. The Equation (67) now can be written as
ey, Y& (73)
d oy, dg X

Following Poincare [11], the general solutions in the neighbourhood of the generating solutions may be written as
x=a+B+&(s),  Vi=m(0)s+m+7+7m(s)=n"s+o +r+n(s)
The Equation (73) can be written in terms of new variable & ,7, as

da oK' dm_ KT g9 (74)
dg¢ onm, dg 0¢;
where

K'(.6om)=(+a)K[c.a+ B +& %% +o +y+n |-(L+a)K (g.a.00% +o, )+10& +nl,,

)
0 2 aK 6K ) 0 0o
=(l+a [K(g,&,ni‘ )g+@)+;(§ia+ﬂi a—wiﬂwf 6 +n08, -1+ a)K (g.a.n s +o),

2

K oK) . .
=(1+a)), e jﬂh( & +nlé,.
=1 i i

Now in order that the periodic solution may exist, the necessary and sufficient conditions are written as

% (75)—% (0)=&(7,)=0, (75)

Yi (75)—V;(0)—27K; =n; (0)=0. (76)
Restricting our solution only upto the first order infinitesimals, the equations of motion (74) may be written as

LIS 77)

dg ow

d77- oK (0)

— =—(1+a)—-n". 78

ac ~ re) oo (78)

Expanding K (g, a +p ,ni(°)g + o + }/i) in ascending powers of £, y,, u , we find that Equation (77) may be written as

dék _ 0 0)
E—(lﬂl)a'((g,ai +B.m s+ o +7’i),

~(1+a)-

@y

[Kolc.a + )+ K, (.2 + Bons + o, +7,) |

= ﬂai Ki(a +B.m% +a+7), [ is neglected]
,

k
1dé, 0 0) 2 oK oK
———=—|K/(g.8,7 ¢, 0 |+ L+, —L ||
e awk{l(g.ng );ﬁaai ' o
Neglecting higher order terms and integrating with respect to ¢, we get

B R [ L R e e D Y L

P )| d0, o aa =

Sgk(TO'ﬂi']/i'lu)_ [ ] ZZ: 8Z[K] ZZ:T 82[K1]

,u 258 a2 G dm

where [K, ] =Ti](l K, (g, ai,ryi(o)g+a)i)dg.
00
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BV o[K 2 az K
:‘gk(roﬂ.% _ ] Zﬂ [ 1],
HTy O, 631 [ awlawl
BV *[K K o’[K *[K
o &lrabr >: i a9 P D 9 DO L9 Y
HT, 0w, 0w,08, Ow,0a, 0w, 2 dwow, (79)
& Borom) oK, &[K] o O[K] [K] K]
= +p +5, N 72 7 =0.
HT, ow, O0m,08, Ow,0a, 0w,00, 0w,
From Equation (78),
d?] oK (0)
haldi ] —_n
ac (1+a) o
dnp, 0K, < o°K B o°K,
de “ da, ﬂl;aaiaal ﬁz.zllaalaa2+o(ﬂ)'
Integrating with respect to ¢, we get
B i oK O°K, °K,
m(s. By ”)=a—°+ﬂl p, ro(u)=0,
-7, <%118a1 6a18a (80)
(5. B, 71: 1)
= =0.
- “a, ﬂlaaaai ﬂzaaa +o(u)

By implicit function theorem, we may say that & can be expressed in termsé,,n,,n,. So, we are left with the
equations involving five variables, viz £, 5,,7,,7, and . Hence, two unknowns y, and @ may be chosen arbitrarily.
Let », =0anda = a(,u) # 0. Further the choice of the origin of time is arbitrary, so we may take @, =0 . The Equations

(79) and (80) will give g, p,.7, as analytic function of 4, reducing to zero with ., if the following conditions of
Duboshin [5] are satisfied for periodic orbits.

oK _ -

o -0 (=12) (81)

o[K,] _ i

. 0, (i=12) (82)
(& m.m,)

S LA SR V) 83
AN &

where = =y =0 i.e., Equations (81) and (82) together will justify Equation (83).
From Equation (83),

95 Om 0m
oy, Oy, Or,
)| on om
op, OB, op;
05 Om 0y
op, OB, Op,
From Equations (79) and (80),
L ) 2 g
Y. 0w 7, 97,
o5, _0'[K] o __ 0K, am 0K
op,  Ow,da,’ B, ’ oa B, ’ 08,08,
95, _ az[Kl] on _ 0°K, on, ___ 0K,
a_ﬂz_awzaaz, a_ﬂz__oaaiaaz7 aﬁz__oTazz’
2
iK;] 0 0
0w; K, %K,
I L S T (9 ey
dw,08, ® da’ i aa1 * 0w | K, K, |
K] oK, Pk da,0a,  Oag
dw,0a, aaiaa ° oal
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2
J:Tgaz[Kl] 0K, 0Ky (0K, )|
0w | 0a} oa. | oaoa,

Now,

K, =a[-2(na, +co)]% -1,

K 1 ’K
Z ; =a1[—2(na2+co)]2, ¢ > =0,
% 2:h
0°K -n 0°K n’
oa0a, 1 MEY" :—2(na +Cy)’
9,04, [_Z(na2+co):|2 2,04, 2 0
S P B i
° 0w 2(na,+C,) 2(na,+C,) 0w
2.2 62 K
P A L) (84)
2(na, +C,) Ow;
- OlK] o[K] L - : 0 fo|-
Now let us find oo 2w (| —1,2). Taking only zero-degree terms (i.e. for e=0,f =l =Yy,)
i @,
rL=na=z, r/=1+n%a’+2nacos2p,
2 _ 2.2 \/‘ . _ 2.2 T
r; =1+n°a” +nacos2¢—+/3nasin2¢ =1+n‘a +2nacos[2(p+§j,
2 2
VX —X
20=Y,+Y,—————=siny,,
2(mx, +Cy)
Vo=nls+a+n+m(s),  YVo=mc+m+y,+m(s),
X1:a1+ﬂ1+§1( )' X, :az"'ﬂz"'gz(g)!
nasin| 2
or,  nasin2p(20p)  ar, ( T3 j 20) (i_19)
ow, r, ow ) O, r O, ’
2,2
[K,]=1-nGcos2p—na| C, + 1+g—+i13 %—g—Ba n ?n 2¢ \/_Bansan(o (85)
L , 2r; 17 A4 r 2r,
oK '
_[ l]:nGsinzw 26_¢ —na _%%_3_01%_8_01_% ar +_1586 ai
ow, ow, I, 0w, 21, 6w, 1) 0o, Ow, 4Ar) Ow,
. op ., 4 O, 5 op . 4 O,
Iy 2sin 2 cos 22— —sin® 2¢b5r; —2- .| K cos2¢p2 " —sin 2¢5r) —2-
ol 4 (paa)i (pséa)i J3Bna| ° g’al (paa),
-Bn‘a ) 10 !
r 2 r
o|lK 2,2 2.2 2.2
[ l]: 28_§0 nGsin2¢—n? Sin2g0—3 aoFls|n2 _3An5a _gon3a sin(2¢>+£j
0w, oo, r, 2r; 2r, I 3
3 3 ‘a4 a4 'h2A2
+Bn 23|n2¢0032¢—\/_ na’ C0oS2¢ SB#sinz2¢sin(2(p+£j+158#sin(2(p+£j (86)
2 2r; r 3 4r, 3
3,43
msm&psm(&zw ]
2r, 3
o|lK oK
LRI (000 simitary 2K (522 (i=12) 87)
ow, Ow, 0q, 09,
where
2,2 2,2 'h242 2,2 'a3,43
N = nGsinZ(p—n‘:1 sin2go—Lasalsin2(p—3An5a —%sin(2¢+£)+8n5a 2sin2¢pcos 2¢
r, 2r, 2r, r 3 r
RE:L 5B'n‘a* 15B'n’a’ 5J'B (®%)
na cosZ + n7a sin22¢sin(2¢+£j+#sin(2¢+£] na S|n2(psm(2¢+ J
2r; r, 3 4r, 3 3
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olK,| 9o[K
% = % =0 ifand only if N =0, because 6_(p6_(p(| =1,2) are not necessarily zero simultaneously. For
-

Here

making N =0, putting cos2¢ =0 i.e., 2(p=% i.e., sin2p=1 and sin(2¢+%j:%.

_na’_3n'a’c, gn'a’ 3An‘a’ 5Bn‘a’ 15Bn‘a’ 5y3Bn‘a’ _
= =

nG o
I’23 2 r25 2 I’33 2 "37 2 r37 8 I'37 4r,
' 'h2,2 . .
r, 2r; 2r; 2r 2r, 4r, 8r,

(89)

3 : :
=na’ %+i;+g—°3+i+£(4nzaz—2\/§na+3) ,
r, 2r, 2r; 2r; 8

where the parameters o,,n,a,&,, A, B are given in Equation (31) of previous section.
Now from Equation (87),

oK
[ 1] = 26_(p N,

ow, Ow,
o°[K 2 2
[—21]:2 a_(ZN_Fa_(ﬂﬂ ZZG(ZN_FZG_(Dﬂ:ﬂ' asa_¢:£

0w, 0w, 0w, 0w, 0w, 0w, 0w, Ow, oo, 2
%K, ] 3na® .\ na’ . 2 202 ' :

PR (50, +; )+R(12,90r3 +60AT? —140B'n%a’ —105B  + 70/3B na) .

82
By putting suitable values of all the parameters in the right hand side of Equation (90), [k;] #0 i.e, J=0 ie, the
@,

conditions of the existence of periodic orbits given by Duboshin [5] are satisfied. Thus, the periodic orbits of the
infinitesimal mass about any primary are periodic.

V1. CONCLUSIONS

In order to prove the existence of periodic orbits of the first kind in the Circular Restricted Four-body Problem, we
have discussed the problem into five sections starting with introduction about the historical evolution of the topic. In the
second section, we established the equations of motion of the infinitesimal mass under the perturbed gravitational field of
the three primaries. In the present problem, the second primary is an oblate spheroid and third primary is a tri-axial rigid
body. All the primaries are moving on circular orbits about the centre of mass of the dominant primaries P, and P, . The
primaries B and P, are dominant in the sense that B, and P, have influence of attraction on the third primary P, and
infinitesimal mass P but P,and P have no influence of attraction on the primaries P, and P, whereas P, has an
influence of attraction on the infinitesimal mass P only but not on B and P,. That’s the reason; the centre of mass
P, and P, didn’t change. The second section ended with the energy integral of the infinitesimal mass at P(x,,X, ).

The energy function H contains three singularities r, =0,r, =0and r, =0 so in Hamiltonian, mechanics to keep the
energy function H =constant, we need to eliminate any singularity for the case of collision with the corresponding
primary. In the third section, we have introduced a suitable generating function for regularization of H to eliminate the
singularity at r, =0. After regularizing the Hamiltonian H =C, we have developed the canonical equations of motion
corresponding to the regularized Hamiltonian K =0.

In fourth section, we have established the generating solution i.e., the solutions of the equations of motion of the
infinitesimal mass by taking the first primary at the origin i.e., at the centre of mass. On this consideration, we got #=0
and the Hamiltonian becomes K,. By taking K, as our Hamiltonian, we get the solution of the equations of motion,
which is called generating solution. With the help of generating solution and the method of analytic continuation, we can
find the general solution corresponding to the complete Hamiltonian K =K, + uK, where x#0.

In fifth section, we have examined the existence of periodic orbits when =0 with the technique of Chaudhary [4]
applying to the conditions given by Duboshin [5]. Since our consideration satisfied all the conditions for periodic orbits
given by Duboshin, hence we conclude that the periodic orbits of the infinitesimal mass around the first primary exist
when suitable values of u,0,,0, are taken. By shifting the origin to the centre of the other primaries also, the existence

of periodic orbits can be examined. Even by using ‘“Mathematica”, we can show the existence of periodic orbits of the
infinitesimal mass around other primaries also, by taking suitable values of the parameters.
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