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Abstract— We proposed to study the existence of periodic orbits of the first kind in the CR4BP when the second 

primary is an Oblate spheroid, the third primary is a triaxial rigid body and the fourth primary is of comparatively 

smaller mass placed at triangular libration point. By applying the model of Hassan [1,2] and Payal [3], we examine 

the existence of periodic orbits with the technique of Choudhary [4] and conditions of Duboshin [5] with different 

parametric values and found satisfied. 
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I. INTRODUCTION 

Giacaglia [6] applied the method of analytic continuation to examine the existence of periodic orbits of collision of the 

first kind in the Circular Restricted Four–body Problem (CR3BP). Bhatnagar [7] generalized the problem in elliptic case. 

Further Bhatnagar [8] extended the work of Giacaglia [6] in the Circular Restricted Four–body Problem (CR4BP) by 

considering three primaries at the vertices of an equilateral triangle. In last three decades a series of works have been 

performed by different authors with different perturbations in the circular and elliptic restricted three-body and four-body 

problem but nobody established the proper mathematical model of the Restricted Four-body Problem (R4BP).  

Recently Ceccaroni and Biggs [9] studied the autonomous coplanar CR4BP with an extension to low-thrust propulsion 

for application to the future science mission. In their problem they also studied the stability region of the artificial and 

natural equilibrium points in the Sun-Jupiter Trojan Asteroid-Spacecraft system. Using the concept of Ceccaroni and 

Biggs [9] and the method of Hassan [1,2], we have proposed to study the existence of periodic orbits of the first kind in 

the autonomous restricted four–body problem (R4BP) by considering the second primary as an oblate spheroid and third 

primary as a triaxial rigid body. 

 

II. EQUATIONS OF MOTION OF THE INFINITESIMAL MASS 

Let  1,2,3iP i   be the three primaries of masses  1,2,3jm j   respectively, where 1 2 3m m m  . The problem is 

the restricted four-body problem so the fourth body P  of infinitesimal mass m  is assumed to be so small that it can’t 

influence the motion of the primaries but the motion of  P m  is influenced by them. In addition, we assumed that the 

mass 3m  (mass of the third primary placed at 4L  of the R3BP) is small enough so that it can’t influence the motion of the 

two dominating primaries 1 2andP P   but can influence the motion of the infinitesimal body  P m . 

Thus, the centre of mass (i.e. the bary-centre) i.e. the centre of rotation of the system remains at the bary-centre O  of 

the two primaries 1 2andP P  . Also, all the primaries 1 2 3andP P P    are moving in the same plane of motion in different 

circular orbits of radii 1 2 3, andOP OP OP   respectively around the bary-centre O  with the same angular velocity . 

Considering  ,O XY  as an inertial frame in such a way that the XY  plane coincides with the plane of motion of the 

primaries and origin coincides with O . Initially let the principal axes of the second primary 2P  are parallel to the 

synodic axes  ,O xy  and its axis of symmetry is perpendicular to the plane of motion. Since the primaries are revolving 

without rotation about O  with the same angular velocity as that of the synodic axes hence, the principal axes of 2P  will 

remain parallel to the co-ordinate axes throughout the motion. 

Let at any time    1 1 2 2, ,0 and ,0t P P     be the positions of two dominating primaries on the axisx   of the rotating 

(synodic) co-ordinate system and  3 3 3,P    be the third primary placed at the equilibrium point 4L  of 1 2andP P  . Let 

1 2 3, andr r r   be the displacements of 1 2 3andP P P    relative to P  and r  be the position vector of  ,P x y , then 

   

   

1 1 1 2 2 2

3 3 3 3

ˆ ˆ ˆ ˆ, ,
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Fig. 1: Configuration of CR4BP when Second Primary is an Oblate Spheroid and Third Primary is a Triaxial Rigid body 

 

Let 
1 2 3, andF F F   be the gravitational forces exerted by the primaries 1 2 3andP P P    respectively on the infinitesimal 

mass m  at  ,P x y , then 

  1
1 13

1

ˆ ˆGmm
F x i yj

r
                                                                                                                                                   (2) 

Let 1 2 3, andb b b   be the lengths of the semi-axes of the second primary  2 2 ,0P   then the gravitational force exerted by 

 2 2 ,0P   on  ,P x y  is given by McCuskey [10] 

2 2 1
2 2 23 4

2 2

3
ˆ ˆ

2

Gmm Gmm
F r r

r r


     

where 
 2 2

1 2

1 25

b b

R



 , R  is the dimensional distances between the main primaries 1 2andP P  . 

Here 

 22

2

2 2

ˆ ˆ
ˆ ˆunit vector along so ,

x i yjr
r P P r

r r

 
         

 2 12 1

2 3 5 3 5
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2 2
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F Gmm i j

r r r r

       
         

     

                                                                                                (3) 

Let 1 2 3, ,c c c  be the semi-axes of the third primary at  3 3 3 4,P L    then gravitational force exerted by  3 3 3,P    on 

 ,P x y  is given by 

 
2 2 2 2 2

23 3 1 2 3 3 1 2

3 3 3 3 33 4 2 6 2

3 3 3

3 2 15
ˆ ˆ ˆ

2 5 2 5

Gmm Gmm c c c Gmm c c
F r r y r

r r R r R


   
     

 
 where 

   3 3

3

3

ˆ ˆ
ˆ .

x i y j
r

r

   
  

Taking 
2 2 2 2

' '1 3 2 3

1 22 2
, ,

5 5

c c c c

R R
 

 
                                                                                                                                   (4) 

then 

     
2' ' ' '3 3 3

3 3 1 2 3 1 2 3 33 4 6

3 3 3

3 15
ˆ ˆ ˆ2

2 2

Gmm Gmm Gmm
F r r r y

r r r
                          

Total gravitational force exerted by the three primaries on the infinitesimal mass at   ,P x y  is given by 

          

  
 

   
 

' '
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1 2 3 3 3 3 5 5

1 2 3 2 3

' ' ' '
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The equation of motion of the infinitesimal mass in the gravitational field of the three primaries 
1 2 3andP P P    is given 

by 

 
2

2
2 ,

r r
m r r F

t tt


  

   
        

  
                                                                                                                    (6) 

where 
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From Equations (5) and (6), we get 

   
       

     
 

 

1 1 2 2 3 3 2 1 22 2

3 3 3 5

1 2 3 2

' ' ' '

3 1 2 3 3 1 2 3 2 3 31 2 2 1

35 7 3 3 3 5

3 2 1 2 3 2

'

3 1

3
ˆ ˆ2 2

2

3 2 15 3ˆ
2 2 2

3 2

m x m x m x m x
m x ny n x i y nx n y j Gm

r r r r

m x m x m ym y m y m
y i y

r r r r r r

m

    

       




                

     
       




 

 
 

 
' ' '

2 3 1 2 3

3 35 7

3 3

15
ˆ

2 2

m
y y j

r r

  
 

      
 

 

By equating the coefficients of ˆ ˆandi j   from both sides, we get the equations of motion of the infinitesimal mass as 
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Let 
1 2
ˆ ˆv v i v j   be the linear velocity of the infinitesimal mass at  ,P x y  then 

    1 2

1 2

ˆ ˆ ˆ ˆ, as

where ,

dr r d
v r x ny i y nx j v i v j

dt t dt t

v x ny v y nx

 
  

                 

    

  

 Kinetic energy of the infinitesimal mass is given by 

     
2

2 2 2 2 21 1

2 2 2

n
T v x y n xy xy x y        for unit mass of the infinitesimal body.                                            (9) 

where the mean motion of the synodic frame is given by 

 2 ' '

1 1 2

3 3
1 2 .

2 2
n                                                                                                                                                     (10) 

 Let 1 2andp p   be the momenta corresponding to the co-ordinates andx y   respectively then 1 2,
T T

p p
x y

 
  
 

 

1 1 2 2andp x ny v p y nx v                

Thus  2 2

1 2

1

2
T p p                                                                                                                                                          (11)  

Let  1,2,3iV i   be the gravitational potential of the primaries of masses  1,2,3im i   at any point outside of 

 ,P x y , then 

   
 

1 2 2 1
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  Total potential at any point outside of  ,P x y  due to three primaries is given by 

 
 

 ' ' ' '
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                                                 (13) 

The Lagrangian of the infinitesimal mass is given by 
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                            (14)  

The Hamiltonian of the infinitesimal body of unit mass is given by 

 1 2H px L p x p y L       
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                 (15)  

Assuming   as the mass ratio of 
2m  and   as the mass ratio of 

3m  to the total mass of the dominating primaries 

1 2andP P   then 32

1 2 1 2

and
mm

m m m m
    

 
. Also assuming 

1 2 1m m   then 
2 1 3, 1 andm m m         . From the 

definition of the centre of mass of 1 2andm m  , we have 1 1 2 2 0m m    which implies 1 2, 1,        

3 3

1 3
and

2 2
       . Thus the co-ordinates of the three primaries 1 2 3, andP P P   are    

1 3
,0 , 1,0 and ,

2 2
  

 
     

 
 

respectively, which confirms 1 2 2 3 3 1 1PP P P P P    1 2 3i.e. PP P  is an equilateral triangle of sides of unit length.  

Now choosing unit of time in such a way that 1G   and taking 1 2andx x y x    , then the reduced Hamiltonian is 

given by 

   
 

 
' '

1 2 22 2 1

1 2 1 2 2 1 33 5

1 2 3 2 3

31 1
constant.

2 2 2
H p p n p x p x y C
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                                             (16)  

The Hamiltonian – Canonical equations are 

 , 1,2i i

i i

dx dpH H
i

dt p dt x

 
     
 

                                                                                                                            (17) 

 The energy integral of the infinitesimal mass is 
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III. REGULARIZATION 

In our Hamiltonian given in Equation (16), there are three singularities 1 2 3 0r r r   , so to examine the existence of 

periodic orbits around the first primary, we have to eliminate the singularity 1 0r   from the Hamiltonian in Equation 

(16). For this, let us define an extended generating function S  by  

 2 2

1 2 1 1 2 22 ,S q q p q q p                                                                                                                                             (19) 

where  1,2iQ i   are momenta associated with new co-ordinates  1,2iq i   and ,i i

i i
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p q
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                                                                                                 (20) 

   1 1 1 2 2 2 2 1 1 22 and 2 .Q p q p q Q p q p q                                                                                                                   (21) 
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From Equation (21), we have 
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The combination of Equations (15), (24) & (25) gives the Hamiltonian H  in terms of new variables  , 1,2i iq Q i   as 

     
 

 

' '

1 22 2 1

1 2 1 2 2 1 1 2 2 1 3 5

1 1 1 2 3 2 3

2' '

1 2

1 25

3

21 1 1
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                                     (26) 

Let us introduce pseudo time   by the equation 

 1 0 when 0 .dt rd t                                                                                                                                                (27) 

The Canonical equations of motion corresponding to the regularized Hamiltonian K  are given by 

 
' '

and 1,2i i

i i

dq dQK K
i

d Q d q 

 
      
 

                                                                                                                   (28) 

where the regularized Hamiltonian K  is given by 
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                           (29) 

Since   is very-very small in comparison of the masses of the dominating primaries hence  0,   , we can take 

0   and 
2 3

0 1 2 3 .....C C C C C        . Let us write 0 1 0K K K    then from Equation (29), we have 

     2 2

0 1 2 1 1 2 2 1 0

1 1
2 1 say ,

8 2
K Q Q r n Q q Q q C                                                                                                   (30) 
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where    ' '

1 2 1 2 0

3
' 2 , '

2 2
A B


        .  

 

IV. GENERATING SOLUTION 

For generating solution, we shall choose 0K  for our Hamiltonian function, so in order to solve the Hamilton – Jacobi 

equation associated with 0K , let us write   1,2i

i

W
Q i

q


 


 and 1 0     arbitrary constant. Since t  is not 

involved explicitly in 0K  hence the Hamilton – Jacobi equation may be written as 

2 2
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.  

Thus, the Equation (32) reduces to 
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2 .
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n C 

  

        
          

         

                                                                                                      (35)  

This is a partial differential equation of second degree, so by the method of variable separable, the solution of Equation 

(35) may be written as 
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  2 ,W U G                                                                                                                                                                (36) 

where G  is an arbitrary constant. 

Now introducing a new variable z  by 
2

1r z   then 2
dz

d



   

. 2
W U dU dU dz dU

d dz d dz


   

 
    

 
 

i.e., 2 and 2 .
W dU dW

G
dz d


 


    


                                                                                                                           (37)  

Introducing Equation (37) in Equation (36), we get 
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where  
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0 02
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 is a quadratic expression in z .                                                                   (38) 

Thus  
 

02
F zdU

nG C
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                                                                                                                                 (39) 

   
 

1

0, , 2

z

z

F z
U z nG C dz

z
                                                                                                                                  (40) 

where 1z  is the smaller root of the equation   0F z  . 

From Equation (40) we conclude that for general solution, we need only two arbitrary constants assigned as and G  . 

Therefore, the solution (40) may be regarded as a general solution. Following Giacaglia [6] and Bhatnagar [8], let us 

introduce the parameters , , ,n a e l  by the relations 

     2 2

1 2 1 21 , 1 and cos sin 1 cos .
2 2

l l
z na e z an e z z z na e l                                                                       (41) 

where 1 2andz z   are the other roots of the equation   0F z  , a  is the semi-major axis, e  is the eccentricity and l  is the 

semi-latus rectum of the elliptic orbit of the infinitesimal mass around the first primary. It may be noted that for 

1, 0z z l  . 

From Equation (41), 
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Since 1 2andz z   are the roots of the equation   0F z   hence from Equation (38), 
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From Equations (42) and (43), we have 
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Introducing a new parameter L  by the relation 
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From Equation (38), 
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The Hamilton-Canonical equation of motion corresponding to the Hamiltonian 
0K  are given by 
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Also, from Equations (39), (51) and (52) 
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From the last relation of Equation (53), we have 
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Again, from Equation (53) 
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      where 0t  is a constant.                                                                                        (55) 

Now taking andL G   as arbitrary constants in line of and G   and the solutions may be given by the relations 
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From Equation (40), 
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Differentiating partially with respect to G , we get 
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                                                                                                                       (57) 

From Equation (56), 
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                                                                                   (59) 

where    1, 0, 0 , 1, 0, 0 .e G f e G f       
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Now let us find the value of 
0K  in terms of , , ,l g L G . For this, we have 
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Therefore, for the problem generated by the Hamiltonian 
0K , the equations of motion are 
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                                                              (61) 

Further we are to express  and 1,2i iq Q i     in terms of canonical elements , , ,l g L G . From Equation (34), 
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                                                                         (62) 

where   is given by the first equation of (59). Where 1, 0, 0,e G f    then the variables  , 1,2i iq Q i   can be 

expressed in terms of canonical elements  , , ,l g L G  as 

1 2

1 2

2 sin cos , 2 sin sin ,
2 2

4 4
cos cos , cos sin ,

2 22 2

l l
q an q an

L l L l
Q Q

an an

 

 

    

    

                                                                                                    (63) 

where   is given by the second equation of (59). 

The original synodic cartesian co-ordinates in a uniformly rotating (synodic) system are obtained from the Equations 

(20) and (23) when 0  ,  
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                                                                                                           (64) 

The sidereal cartesian co-ordinates are obtained by considering the transformation 

1 1 2 2 1 2

1 1 2 2 1 2

cos sin , sin cos ,

cos sin , sin cos ,

X x nt x nt X x nt x nt
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                                                                                                   (65) 

where t  is given by the Equation (55). 

Now let us express 1K  in terms of the canonical elements , , ,l g L G . From Equation (31), 
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where   2 2 2 2

1 2 31 cos , 1 2 cos 2 , 1 cos 2 3 sin 2r na e l z r z z r z z z              . where a  is given by Equation 

(45), e  is given by Equation (46) and   is given by the first equation of (58).  

By neglecting the higher order terms of e , let the co-efficient of   be denoted by R  then the complete Hamiltonian 

in terms of canonical variables , , ,l g L G  is given by 
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 The equations of motion for the complete Hamiltonian are 
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where 
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. 

The Equation (67) forms the basis of a general perturbation theory for the problem in question. The solution given in 

Equations (62) and (63) are periodic if andl g   have commensurable frequencies that is, if 

02
,l

g

nG C p

L q






                                                                                                                                                        (68) 

where andp q   are integers. 

The periods of ,i iq Q  are 
4 4

and
l g

 

 
  , so that in case of commensurability, the period of the solution is 

4 4
and

l g

p q 

 
  . 

 

V. EXISTENCE OF PERIODIC ORBITS 

Here we shall follow the method used by Choudhary [4] to prove the existence of periodic orbits when 0  . When 

0  , the Equations (67) become 
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Let 1 2 1 2, , andx L x G y l y g         then 

   1 2 1 2

1 20, ,
dx dx dy dy

o o
d d d d

 
   
        

Thus, the Equation (69) can be written as 

 ' '0 andi i

i

dx dy
o

d d


 
     

   , 1,2i i i i ix a y o i                                                                                                                                       (70) 

These are generating solutions of the two-body problem. Here ,i ia   are constants given by 
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The generating solutions will be periodic with the period 
0  if 
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                                                                                                                       (72) 

Here  1,2i i   are integers, so that  i o  are commensurable.  

Let the general solution in the neighbourhood of the generating solution be periodic with the period 

 0 0 01      ,   is negligible quantity of the order of  . Let us introduce new independent variable   by the 

equation 
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. The period of the general solution will be     0

0 0 0 01 1
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 which is same as 

the period of the generating solution. The Equation (67) now can be written as 
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Following Poincare [11], the general solutions in the neighbourhood of the generating solutions may be written as 
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The Equation (73) can be written in terms of new variable ,i i   as 
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Now in order that the periodic solution may exist, the necessary and sufficient conditions are written as 

     0 0 0,i i ix x o                                                                                                                                                    (75) 

     0 2 0.i i i iy y o o                                                                                                                                           (76) 

Restricting our solution only upto the first order infinitesimals, the equations of motion (74) may be written as 
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Expanding 
  , ,
o

i i i i iK a         in ascending powers of , ,i i   , we find that Equation (77) may be written as 
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Neglecting higher order terms and integrating with respect to  , we get 
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From Equation (78),  
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Integrating with respect to  , we get 
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By implicit function theorem, we may say that 
1  can be expressed in terms 2 1 2, ,   . So, we are left with the 

equations involving five variables, viz 1 2 1 2, , , and      . Hence, two unknowns 
1 and    may be chosen arbitrarily. 

Let  1 0 and 0        . Further the choice of the origin of time is arbitrary, so we may take 1 0  . The Equations 

(79) and (80) will give 
1 2 2, ,    as analytic function of  , reducing to zero with  , if the following conditions of 

Duboshin [5] are satisfied for periodic orbits. 
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where 0i i      i.e., Equations (81) and (82) together will justify Equation (83). 
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Now let us find 
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where the parameters ' '

1 0, , , , ,n a A B   are given in Equation (31) of previous section.  

Now from Equation (87), 
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By putting suitable values of all the parameters in the right hand side of Equation (90), 
 2

1

2

2

0
k







 i.e., 0J   i.e., the 

conditions of the existence of periodic orbits given by Duboshin [5] are satisfied. Thus, the periodic orbits of the 

infinitesimal mass about any primary are periodic. 

 

VI. CONCLUSIONS 
In order to prove the existence of periodic orbits of the first kind in the Circular Restricted Four-body Problem, we 

have discussed the problem into five sections starting with introduction about the historical evolution of the topic. In the 

second section, we established the equations of motion of the infinitesimal mass under the perturbed gravitational field of 

the three primaries. In the present problem, the second primary is an oblate spheroid and third primary is a tri-axial rigid 

body. All the primaries are moving on circular orbits about the centre of mass of the dominant primaries 1 2andP P  . The 

primaries 1 2andP P   are dominant in the sense that 1 2andP P   have influence of attraction on the third primary 3P  and 

infinitesimal mass P  but 3 andP P   have no influence of attraction on the primaries 1 2andP P   whereas 3P  has an 

influence of attraction on the infinitesimal mass P  only but not on 1 2andP P  . That’s the reason; the centre of mass 

1 2andP P   didn’t change. The second section ended with the energy integral of the infinitesimal mass at  1 2,P x x .  

The energy function H  contains three singularities 1 2 30, 0 and 0r r r      so in Hamiltonian, mechanics to keep the 

energy function constantH  , we need to eliminate any singularity for the case of collision with the corresponding 

primary. In the third section, we have introduced a suitable generating function for regularization of H  to eliminate the 

singularity at 1 0r  . After regularizing the Hamiltonian H C , we have developed the canonical equations of motion 

corresponding to the regularized Hamiltonian 0K  . 

In fourth section, we have established the generating solution i.e., the solutions of the equations of motion of the 

infinitesimal mass by taking the first primary at the origin i.e., at the centre of mass. On this consideration, we got 0   

and the Hamiltonian becomes 0K . By taking 0K  as our Hamiltonian, we get the solution of the equations of motion, 

which is called generating solution. With the help of generating solution and the method of analytic continuation, we can 

find the general solution corresponding to the complete Hamiltonian 0 1K K K   where 0  . 

In fifth section, we have examined the existence of periodic orbits when 0   with the technique of Chaudhary [4] 

applying to the conditions given by Duboshin [5]. Since our consideration satisfied all the conditions for periodic orbits 

given by Duboshin, hence we conclude that the periodic orbits of the infinitesimal mass around the first primary exist 

when suitable values of  1 2, ,    are taken. By shifting the origin to the centre of the other primaries also, the existence 

of periodic orbits can be examined. Even by using “Mathematica”, we can show the existence of periodic orbits of the 

infinitesimal mass around other primaries also, by taking suitable values of the parameters. 
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