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Abstract— This paper deals and established the equation of motion of restricted three body problem. We assume the massive 

bodies having spherical symmetry move about the center of mass in circular orbits. The restricted problem of the three 

bodies is to describe the motion of the third body. Next we find stationery solution and discussed about stability 

and solve the Sitnikove problem. 
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I. INTRODUCTION 

Let two massive bodies having spherical symmetry move about their centre of mass in circular orbits. A third mass, the 

infinitesimal one, moves under the combined gravitational attraction of the two masses but does not influence their 

motion. The restricted problem of the three bodies is to describe the motion of the third body. If we ignore the presence 

of the sun, the lack of sphericity of the earth, and the eccentricity of the moon's orbit, the earth-moon system together 

with a small artificial satellite constitutes such a system of masses.Euler was the first to contribute towards the restricted 

problem in 1772 in connection with his Lunar Theories. His main contribution was the introduction of a synodic 

(rotating) co-ordinates system resulting in what is called the Jacobi integral which was discovered by Jacobi (1836). 

Implications of this integral are numerous. It determines the regions of motion. Its application to celestial mechanics was 

first made by Hill (1878), Poincare and Birkhoff are the pioneers in the qualitative methods of dynamics.  

Poincare‟s famous work in three volumes 'Methods Nouvells' completed in (1899) was so new and original that many of 

its implications are still not clear. We give some important results in regard to the restricted problem. To cope with the 

situation of demerits of three body problem, we consider one of the masses is so small that gravitational effect due to this 

mass on other two masses is neglected. This small body is known as „infinitesimal body‟ and other two are called finite 

masses.So, in the restricted three body problem the motion of the infinitesimal mass is evaluated in the gravitational field 

of two finite masses. The earth, moon and artificial satellite system constitute a good example of restricted three body 

problem. 

 

                                                                                        II. EQUATION OF MOTION 

 

Let us consider a co-ordinate system (O, XYZ) rotating relative to the inertial frame of reference with a constant 

angular velocity   about z-axis. Without loss of generality, we can choose the co-ordinate system in such a way that x-

axis lies along the line joining the two finite masses m1 and m2 with O as barycenter. The motion of m1 and m2 are 

known. We are only to find the motion of m (infinitesimal mass). Let co-ordinate of mbe  zyx ,, . Radius vector from 

m to m1 and m2be 21  and pp


 respectively.Kinetic energy of m in rotating frame of reference (O, XYZ) about z-axis is 

given by 
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Potential energy function V is given by 
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Lagrangian (L) = T – V.Equation of motion will be  
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whichgives  
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where  222
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(i). Stationary Solutions:In 1772 Lagrange's discovered two special solutions of the three – body problem which 

may be designated stationary solutions. By stationary solution, we mean one in which the geometric configuration of the 

three masses remains invariant with respect to time. The first solution is known as Straight line solution and the second 

solution is, the equilateral triangle solution, valid for any masses moving in coplanar circular orbits around their centre 

mass, with constant angular velocity. Since, in the conservative system of forces, the force function is the function of 

position co-ordinates. So, if the force components be equated to zero, the solution will give equilibrium points. So, by 

taking 0

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U
, we get two types of equilibrium points, they are collinear and triangular respectively. 

321  and  , LLL are collinear equilibrium points in classical restricted three body problem whereas 54  and  LL  are 

triangular equilibrium points. The following figure will show their positions. 

     L4 
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Figure 1.3: Position of Equilibrium Points in Restricted Problem of Three Bodies 

(ii). Jacobi Integral: The problem has a well-known Jacobi integral c 22 , where  is the speed of the 

infinitesimal mass and   .
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(iii). Curves of Zero Velocity 

(a). Curves of zero velocities is given by 02  c , 

(b). When the infinitesimal mass moves in the vicinity of either the first primary or the second 

primary, it cannot escape and is said to have the 'Hill Stability'. 

 

Figure : Contours of Zero Velocity in Restricted Three body Problem 

(iv). Sundman Inequality: We know in the inequality  
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(a). for h> 0, the inequality implies IU
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(b). for h< 0, the inequality implies successively 
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These Inequalities divide the zone of possible motion into three disconnected parts. Such disconnection never 

happens whenever n> 3 this is the major differences between three body problem and more than three body problems. 
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Stability: Hagihara (1957) considered stability a "fascinating and difficult problem of human culture". He 

formulated the problem of stability of the solar system as follows: "Will the present configuration of the solar system be 

preserved for some of the interval of time? Willthe planets eventually fall into the Sun or will some of the planets recede 

gradually from the sun so that they no longer belong to the solar system? What is the interval of time, at the end of which 

the solar system deviates from the configuration by apreviously assigned small amount?" Then Hagihara continues: 'The 

question has long been an acute problem in celestial mechanics since Laplace, not to the Egyptian or the Chaldean 

civilization. Various mathematicians have often discussed the term “stability” and the solution of the problem becomes 

more and more complicated and difficult to answer as we dig deeper and deeper into it.  

Present day mathematics hardly enables us to answer this question in a satisfactory manner for actual solar 

system. We must limit ourselves here to describing the present status of the efforts towards solving this fascinating but 

difficult problem of human culture. The phase space of an autonomous Hamiltonian system of three degrees of freedom 

is 6-dimensional, but if we consider only orbits with the same energy the phase space becomes 5-dimensional. A 

Poincare surface section is thus 4-dimensional. If the potential is symmetric with respect to the plane z = 0, this plane is 

appropriate surface of section  , , ,x y x y . The z-velocity, 
.
z is then found from the energy equation 

 , , , , ,H H x y z x y z h                                                  …(6) 

For 0z  . If we start an orbit at a point 0 0 0 0
, , ,x y x y
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.
with 0z   and fixed h we find the next intersection with the 

surface of section by solving the Hamiltonian equations of motion. If we denote now the variable 
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 ..
yxyx ,,, by  4321 ,,, xxxxX , we find the first consequent of X0by a transformation of the form      01 TXX   

                                              …..(7) 

Where T represents four functions   10 20 30 40, , , .t if f x x x x  

A small change  403020100 ,,,  initial condition X0gives also small variations of x1 which in the linear 

approximation are 


4

1 0

i

jiji                                                                                                   ……. (8) 

 Or in matrix form 

0 A  

The coefficient ijare the partial derivatives of fiwith respect to xj0. These coefficient are found by calculating 4 

orbits near the original one with deviations (, 0, 0, 0), (0, , 0, 0), (0, 0, ,0) and (0, 0, 0, ), respectively, for a small 

but arbitrary . 
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If there is a periodic orbit close to X0we can find it by Newton method [Magnenat 1982b]. Namely if we set 

01 ii   in (7) we solve this system for 0i and find a better approximation 00

'

0  XX for the periodic orbit. By 

repeating this procedure a few times we find the periodic orbit with the required accuracy. 

The variables  4321 ,,, xxxx on the surface section are not necessarily canonical, but they can be expressed in 

terms of canonical variables. As a consequence [Hadjidemetriou 1975] the volumes in the 4-D surface of section are 

preserved and this implies that the determinant of the matrix A is equal to 1. i.e. det(A) = 1 Furthermore, the eigenvalues 

of the matrix A are inverse in pairs, because the system is derived from a Hamiltonian. This means that the characteristic 

equation 

0 IA  ,  

whereI is the unit matrix, is of the form 

01234   ,                                                           ………………….. (9) 

where    44332211 aaaaATrace   

and
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Equation (37) can be written as  
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It is obvious that 1,1 4321   i.e. the eigenvalues are inverse in pairs. 

In the particular case when the dynamical system is 2-Dimensional, the Poincare surface section is 2-Dimensional and 

there is only one stability parameter b. If a is the Henon parameter in the case of symmetric orbits. Thus b = –2a. 

We have the following four type of stability, using the terminology of Contopoulos and Magnenat [1985]. 
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(1) Stable orbits: Then the eigenvalues are complex conjugate  3412 ,    on the unit circle. 

This happens if bi are real  0.. ei  and 2,2 21  bb . In this case
ii

i e   ,where 

3412 ,   and 2211 2,2  CosbCosb  . 

(2) Simply unstable orbit: Then two eigenvalues are on the unit circle and two on the real axis (positive or 

negative). Thus 0  and 2,2 21  bb or 2,2 21  bb . 

(3) Doubly unstable orbits: Then all the four eigenvalues are on the real axis. Thus 0 and 

2,2 21  bb . 

(4)  Complete unstable orbits: Then all four eighenvalues are complex, but outside the unit circle. Two of 

them are outside and two of them inside the unit circle. In this case 0 .  

Broucke [1969] used a more detailed classification into seven types: 

(l) Stability, (2) Complex Instability, (3) Even-Odd Instability,          (4) Even-Even Instability, (5) Odd-Odd 

Instability, (6) Even Semi-Instability, (7) Odd Semi-Instability. 

   

 

Sitnikov problem: The Sitnikov problem [1961] is a special case of restricted three body problem. It refers to 

the motion of the test particle along an axis perpendicular to the plane of motion of two equal primaries that move on 

elliptic orbits. The axis passes through the center of mass of the system. 

 

 

Fig6: The Sitnikov problem. 

The polar co ordinates of the one primary around the center of mass are (r, v) and the elliptic orbit is given by 

the relation 
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According to Kepler's first law, where e is the eccentricity, v the true anomaly and the semi major axis is equal to 
2

1
. 

Then the test particle moves along the Z-direction according the law 
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The orbit of the test particle may be periodic, quasi periodic, chaotic, or escaping to infinity. The strangest cases 

of chaotic orbits are orbits that are unbounded yet nonescaping. Such orbits go to arbitrarily large distances along the Z-

axis, but they always return near the origin. 

If the eccentricity e is zero the problem is integrable and chaotic orbit does not exist. But if e is different from 

zero, even if it is very small, the whole complexity of the non-integrable problems appears [Liu and Sun, 1990]. 

The Simplest version of Sitnikov problem is known as circular Sitnikov or MacMillan problem in which the 

eccentricity e of the primaries is equal to zero. This dynamical model was first described by Pavanini [1907)]. W.D 

MacMillan [1910] presented it as an example of an integrable system of the restricted three-body problem and gave a 

solution in terms of a quadrature involving elliptic integrals, where the primaries are moving in circular orbits around 

their centre of mass and discussed in detail and he showed the integrability of the equation of motion with the aid of 

elliptic integrals. He found the solution as 
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III.CONCLUSIONS 

 

We established the equation of motion of restricted three body problem when two massive bodies having spherical 

symmetry more about their centre of mass in circular orbits. Next we find stationary solution and we get, two type of 

equilibrium points, they are collinear and triangular respectively. 321  and  , LLL are collinear equilibrium points in 

classical restricted three body problem whereas 54  and  LL  are triangular equilibrium points. When the infinitesimal 

mass moves in the vicinity of either the first primary or the second primary, it cannot escape and is said to have the 'Hill 

Stability' and solve the Sitnikov problems. 
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