SOIL STABILIZATION BY USING FLY ASH, LIME AND WASTE PLASTIC IN EARTHEN ROAD
Keywords:
soil stabilization, fly ash, lime, plastic, increases strength of earthen roadAbstract
Unconfined compression tests, Brazilian tensile tests, and saturated drained triaxial compression tests with local strain measurement were carried out to evaluate the stress-strain behavior of a sandy soil improved through the addition of carbide lime and fly ash. The effects of initial and pozzolanic reactions were investigated. The addition of carbide lime to the soil-fly ash mixture caused short-term changes due to initial reactions, inducing increases in the friction angle, in the cohesive intercept, and in the average modulus. Such improvement might be of fundamental importance to allow site workability and speeding construction purposes. In addition, under the effect of initial reactions, the maximum triaxial stiffness occurred for specimens molded on the dry side of the optimum moisture content, while the maximum strength occurred at the optimum moisture content. After 28 days, pozzolanic reactions magnified brittleness and further increased triaxial peak strength and stiffness; the maximum triaxial strength and stiffness occurred on the dry side of the optimum moisture content. The waste material such as fly ash, lime and plastic increase the soil stability and reduce the cost of construction.